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Preface

Dear reader,

In the cooperation of the University of Primorska and 
the University of Szeged we have decided to organize 
a conference in 2010, which reflects both the theo-
retical and applied aspects of computer science. The 
Mini-Conference on Applied Theoretical Computer 
Science (MATCOS - 10) was a two-day event in the 
frame of which a student session was organized. This 
occasion gave the opportunity for distinguished Master 
students and early stage PhD students to present their 
preliminary results and ongoing research. It turned out 
that our initiative was very successful; the full papers 
of 9 student talks were honoured to contribute to the 
post-proceedings of this event. 

Continuing the tradition, the Middle-European Confer-
ence on Applied Theoretical Computer Science (MAT-
COS-13) also secured the place for high-level student 
research. This post-proceeding is devoted to publish 
the carefully reviewed full papers presented at MAT-
COS-13 held on October 10th and 11th, 2013 in Koper, 
Slovenia. The topics of the contributions cover a wide 
range of theory and application, reflecting the scope 
of the conference: algorithmic solutions for life science 
problems, artificial intelligence methods for games and 
computer vision, compiler construction, advanced data 
structures, application-oriented scheduling and numer-
ical simulation. All papers presented promising results, 
proving the excellent research attitude of the contribu-
tors with showing the potential for a scientific career. 

The high standard of the presentations in the regular 
session convinced us to collect selected papers for a 
special issue in the international journal Informatica, 
which was published as number 3 in volume 39, 2015. 
The success both in organizing the meeting and in 
publishing the best results of the conference motivate 
us to make this event a regular meeting. Our plan is to 
organize the next conference in October 2016 in Koper 
with involving again regular and student sessions.

MATCOS-13 was smoothly organized, we are very 
grateful to Janez Žibert, chair of Organizing Committee 
and to “his team”. Special thanks to Professor Silva-
no Martello for accepting our invitation as a keynote 
speaker and giving his nice talk. The success of the 
conference would have not been possible without the 
aid of programme committee, while the professional 
work provided by the University Primorska Press in the 
publishing process was also indispensable. Thank you 
for all their support.

Miklós Krész, chair of student conference
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Efficient implementation of algorithms for solving
subgraph isomorphism problem in cheminformatics

Mónika Vigula
Eötvös Loránd University

Budapest, Hungary
vigula.monika@gmail.com

ABSTRACT
In a typical task in cheminformatics [1], we have to re-
trieve all target molecules from a given database containing a
query molecule as substructure. Representing the molecular
structures as labeled graphs, this task can be formulated as
the subgraph isomorphism problem, which is a well-known
NP-complete problem.

In our work, we have studied three algorithms solving the
subgraph isomorphism problem. We have implemented the
Ullmann algorithm [5] and the VF2 algorithm [2] along with
the atom re-ordering step of QuickSI [4] and additional
heuristics. The time and memory requirements of these
algorithms were also evaluated. We have determined the
combination of heuristics resulted in the best performance
on real data sets as well.

Keywords
cheminformatics, subgraph isomorphism problem, substruc-
ture search

Supervisors
Krisztián Tichler1 and Péter Kovács2

1. INTRODUCTION
Cheminformatics is a rapidly growing field which implies
interesting challenges for information technology beyond
chemical background. It helps us to select pharmaceutical
research directions and reduce the numbers of costly research
tests. We try to predict the possible outcome of an experi-
ment using our mathematical and information technological
knowledge.

In a typical task, a database containing a lot of molecules

1Eötvös Loránd University, Hungary, Institute of Informat-
ics, ktichler@inf.elte.hu
2Eötvös Loránd University, Hungary, Institute of Informat-
ics, kpeter@inf.elte.hu

(mostly hundreds of thousands or millions) and a query
molecule are given. We have to find all the target molecules
from the database containing the query molecule as sub-
structure (see Figure 1). In the first step, we represent the
molecules as undirected, labeled graphs. Then, we check for
each target molecule whether it contains the query molecule
or not. As this is a well-known NP-complete problem,
screening methods are used as preliminary step. Our pur-
pose is to identify quickly as many of those molecules from
the database that cannot contain the query as substructure.
Only the remaining molecules are to be examined by the
actual substructure search algorithm.

Figure 1: Our motivation

This problem has been studied extensively for decades. One
of the most common solution methods is the algorithm pro-
posed by J. R. Ullmann [5] in 1976, the VF2 algorithm [2]
published by Cordella et. al. in 2001 is also widely used,
while the QuickSI algorithm [4] is a quite new algorithm, it
was published in 2008.

Our aim was to overview algorithms related to the subgraph
isomorphism problem and implement some of these meth-
ods efficiently using heuristics that exploit characteristics
of molecular graphs to improve performance (e.g., bounded
degree, vertex and edge labels). In some applications, it
is also necessary to compute all possible mappings between
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the query and the target structures, thus we also considered
this problem. We tested the correctness and efficiency of our
implementations on real data sets.

2. THE SUBGRAPH ISOMORPHISM
PROBLEM

Definition 1. A labeled graph is defined as a 6-tuple
G = (V,E,ΣV ,ΣE , lV , lE) where V is the set of vertices, E
is the set of undirected edges, ΣV and ΣE are sets of vertex
and edge labels, and lV : V → ΣV , lE : E → ΣE denote
label functions mapping a vertex or an edge to a label, re-
spectively.

Definition 2. A graph G1 = (V1, E1,ΣV1 ,ΣE1 , lV1 , lE1)
is subgraph isomorphic to G2 = (V2, E2,ΣV2 ,ΣE2 , lV2 , lE2)
(denoted by G1 ⊆ G2) if there exists an injective function
f : V1 → V2 satisfying

1. ∀u∈V1 (lV1(u) = lV2(f(u)))

2. ∀u, v∈V1 ((u, v) ∈ E1 ⇒ (f(u), f(v)) ∈ E2)

3. ∀u, v∈V1 ((u, v)∈E1 ⇒ lE1((u, v)) = lE2((f(u), f(v))))

Notice that G2 does not necessarily contain G1 as induced
subgraph. A simple example is shown in Figure 2. A possible
mapping is
f(1) = 14 f(5) = 5 f(9) = 12
f(2) = 2 f(6) = 8 f(10) = 3
f(3) = 1 f(7) = 4
f(4) = 6 f(8) = 11

Figure 2: An example where G2 contains G1 as sub-
structure

Note furthermore, that hydrogen is usually not represented
in molecules as its presence can be deduced from our chem-
ical knowledge.

In cheminformatics, query molecule, target molecule, atoms,
bonds and substructure are usually used instead of G1, G2,
vertices, edges and subgraph, respectively, therefore these
notions are used in the rest of the paper.

3. SCREENING
A preprocessing step, called screening, is used to exclude as
many molecules as possible from the target database that
cannot contain the query molecule as substructure. Our aim
was not to study and improve the existing screening meth-
ods, therefore only some simple conditions were checked
before running the implemented substructure search algo-
rithms. If query ⊆ target then the atom/bond count of the
query is less than or equal to the atom/bond count of the
target. Similar inequalities hold for various types of atoms

(e.g., C, N, O) and bonds (e.g., simple, double, triple) as
well.

In another screening method, two matrices are calculated for
each molecule. Columns and rows correspond to frequent
atom types3 (e.g., C, N, O) and bond types (e.g., simple,
double), respectively. Initially, all matrix elements are zero.
The bonds of the molecules are examined sequentially. If
the current bond connects two atoms of frequent type, then
the two elements of the matrix are increased by one. It can
easily be proved that each element of the query’s matrix
is less than or equal to the corresponding element in the
target’s matrix if query ⊆ target.

Simple example molecules are shown in Figure 3. The cor-
responding matrices are shown in Table 1. The elements of
the matrices of the query and the target are separated by a
colon. As the query’s matrix contains non-zero elements and
all elements are zero in the target’s matrix, query * target
holds.

Figure 3: Example molecules to screening


C N O F P S . . .

single 4 : 0 1 : 0 1 : 0 0 : 0 0 : 0 0 : 0 . . .
double 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 . . .
triple 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 . . .


Table 1: Matrix

4. ALGORITHMS
We have studied three well-known substructure search algo-
rithms, the Ullmann algorithm [5], the VF2 [2], and the
atom-reordering step of the QuickSI [4]. Although they
are all backtracking algorithms, they build the backtrack-
ing trees in different ways. Furthermore, QuickSI rearranges
the atoms of the query molecule in the first step to achieve
better performance. Each node of the backtracking tree rep-
resents a partial isomorphism from the query to the target
molecule. As this tree can be exponential in size, the pur-
pose of the algorithms is to filter out nodes that can not
be extended to achieve a subgraph isomorphism function.
Therefore, different feasibility functions are applied by the
methods.

The Ullmann algorithm maintains a boolean matrix (de-
noted by M) representing the possible branches at the dif-
ferent depths. Mi,j is true if the current partial mapping
can be extended by adding f(i) = j to achieve a subgraph

3The frequent atom types were determined based on a public
molecule set of National Cancer Institute [3].
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isomorphism between the query and the target. This ma-
trix is refined after each step: the algorithm checks for each
pair of i and j where Mi,j is true whether the non-mapped
neighbors of the i-th atom in the query can be mapped to
a neighbor of the j-th atom in the target. If this condition
does not hold, then Mi,j is set to false and a new refine phase
is performed.

The VF2 algorithm maintains a neighbor set for each
molecule (Nbq, Nbt) which contains those atoms that are not
involved in the current partial mapping but have a neighbor
that is already involved. The algorithm distinguishes the
following two cases.

1. Nbq 6= ∅. In this case, the next atom to be mapped
is the element of this set with the minimum index.
This atom can be mapped only to an atom from Nbt.
Before the algorithm extends the current partial map-
ping by adding f(i) = j, it checks if the atom and the
bond types match and |Nbq| ≤ |Nbt| holds for the new
neighbor sets.

2. Nbq = ∅. In this case, the non-mapped query atom
with the minimum index is considered, which can be
mapped to any non-used atom of the target. Before
the extension of the current partial mapping, only the
atom types are checked.

5. HEURISTICS
In this section, we briefly introduce the heuristics we have
developed to improve upon the considered algorithms.

5.1 Parent heuristic
Definition 3. Suppose the atoms of the query are indexed

by positive integers and a partial mapping is given. Let
qi (i ∈ {1, . . . , |V1|}) be an arbitrary non-mapped atom of
the query molecule. Define the parent atom of qi (denoted by
parent(qi)) as its mapped neighbor atom with the minimum
index (if it has any).

Notice that at least one atom in each component does not
have a parent atom (i.e., the atom mapped first in its com-
ponent). Furthermore, note that the parent atoms are not
modified by extensions of the current partial mapping. The
key observation that we exploited is that a query atom qi can
only be mapped to those atoms of target that are adjacent
to the image of parent(qi). Search algorithms can effectively
take advantage of this property in case of molecular graphs,
because they are very sparse.

A simple example is shown in Figure 4 to demonstrate how
this heuristic can be applied. Suppose that the current map-
ping is f(1) = 4, f(2) = 5, and f(3) is under consideration.
The parent atoms are indicated by arrows pointing from an
atom to its parent atom. As f(parent(3)) = 4, which has
two neighbors that are not mapped yet, namely 2 and 6, the
only possible assignments are f(3) = 2 and f(3) = 6.

5.2 Atom order in the query molecule
H. Shang et. al. introduced a new method in [4] to obtain
better performance of search algorithm. Their idea is to
rearrange the atoms of the query molecule according to the

Figure 4: The parent heuristic

frequency of the different atom and bond types in the given
database. They suggested mapping the rare atoms before
the frequent ones while keeping connectivity. This new atom
order needs to be calculated only once before any search
against the database.

Although this method has been shown to reduce search time,
it has some limitations. In its original form, it is applicable
only for connected query graphs. However, as in many real-
world applications, the query structure may consist of mul-
tiple components, we have extended this method to be ap-
plicable for such queries. For example, an isolated atom can
be mapped to any atom of the target having the same atom
type; therefore it is beneficial to consider isolated atoms last.
Furthermore, if we apply this atom ordering technique, then
the calculation of parent atoms should also be adjusted.

5.3 Ullmann Algorithm
We have successfully applied the aforementioned two heuris-
tics in the Ullmann algorithm. They both substantially de-
crease its running time.

In addition, we could also decrease the memory requirement
of the algorithm. Its straightforward implementation re-
quires O(n3) space (where n = max{|V1|, |V2|}), which can
be reduced to O(n2) by saving only the modified matrix el-
ements at each depth instead of saving the entire boolean
compatibility matrix. Because every element can be set from
true to false only once under a node in a backtracking tree,
at most O(n2) positions need to be saved in total.

Another improvement exploits that the compatibility matrix
contains exactly one true value in the first d rows, where d
denotes the current search depth. Therefore, the matrix
refinement step can be started at the (d + 1)-th row.

5.4 VF2
We have also devised a few improvements for the VF2 algo-
rithm. First, the candidate sets are not pre-calculated and
not stored in memory. If the next candidate is needed, it
can be calculated on the fly. Additionally, if only the first
mapping is required, then there is no need to calculate those
candidates that might not be used in a later step.

Although comparing the cardinality of neighbor sets im-
proves the performance of the original algorithm, we found
that it becomes superfluous when the parent heuristic is also
applied. In fact, this new heuristic developed by us seems
to be clearly superior to the original technique.

Apart from that, the atom reordering heuristic is also ap-
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plied to further reduce the running time of the algorithm.
Moreover, an additional improvement is based on the obser-
vation that the order of the atoms in the query can be fixed
in the first step, thereby avoiding to find the atom with the
minimum index at each step.

6. TEST CASES, SPEED AND MEMORY
RESULTS

We have compared the implemented algorithms combined
with all the improvements mentioned above in different as-
pects. We have studied the time requirement for finding
either the first or all substructure mappings for molecules
having different size. Our test suite consists of three in-
stance sets: (1) small queries and small targets4; (2) small
queries and large targets, and (3) large queries and large
targets. The test molecules were selected from a public
molecule database of National Cancer Institute [3]. The
different test cases are summarized in Table 2. The first
and second row of each cell corresponds to the queries and
targets, respectively. Some of the 20 small, frequent test
molecules are shown in Figure 5.

The heuristics mentioned above have decreased the search
time of the Ullmann algorithm and VF2 by 35-40%. The
running time can be further reduced by 10% if the algo-
rithms are implemented in iterative way instead of recursive
way. Finding all mappings required between 1.5 and 3 times
as much running time as finding only the first mapping.

Our results show that the VF2 algorithm is typically much
faster than the Ullmann algorithm. We found that the re-
finement of the initial boolean matrix used by the Ullmann
algorithm takes about 70% of the total search time.

The reduced search time for 1000 query-target pairs are
shown in Table 3.

Query molecules

small large

T
a
rg
et

m
o
le
cu

le
s

small
20 small molecules

–

molecules having 11-15 atoms

large
20 small molecules large, similar

molecules at least 76 atoms molecules

Table 2: Test cases

Figure 5: Some small query molecules

4In cheminformatics, molecules having at most 15 non-
hydrogen atoms are considered as small molecules.

Ullmann alg. VF2

first all first all

small queries
and targets

0.004 s 0.005 s 0.001 s 0.002 s

small queries
and large tar-
gets

0.067 s 0.136 s 0.009 s 0.013 s

large queries
and large tar-
gets

0.27 s 1.084 s 0.01 s 0.027 s

Table 3: The search time for 1000 query-target pairs
at finding the first/all mapping

7. CONCLUSION
This paper presents our results for solving the subgraph iso-
morphism problem. We have implemented the Ullmann al-
gorithm, the VF2 algorithm, and the atom-reordering step of
QuickSI along with various heuristics that we devised to im-
prove upon them. We have compared the memory and time
requirements of the implementations on real-world molecu-
lar graphs having different size. The search time has been
reduced by 35-40% by applying the developed heuristics.
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Adaptive Algorithms For Dynamic Programming With
Applications to Bioinformatics

[Extended Abstract]

Marko Grgurovič
University of Primorska

Titov Trg 4
Koper, Slovenia

marko.grgurovic@student.upr.si

ABSTRACT
In this paper we study a simple computation that lies at
the core of many dynamic programming algorithms, perhaps
most notably those for computing the edit distance between
two strings. Past solutions have assumed properties of the
input such as convexity and concavity and would not work
on general inputs. We obtain an algorithm that combines
the previous algorithms in a way that makes no assumptions
on the input, yet its running time depends on a measure of
“sortedness” present in the input. This measure turns out to
be very natural, and if the input comes from a function, it
corresponds to the number of inflection points of the input
function. An immediate consequence of the result is that
if the input comes from a polynomial of degree d, then the
running time of the algorithm can be upper bounded by
a function of d. The new algorithm extends the previous
results to a wider family of functions and is never worse
than either special cases.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Nonnumerical Algorithms
and Problems

General Terms
Algorithms, Theory

Keywords
Dynamic programming, edit distance

1. INTRODUCTION
We consider the following simple computation: given a se-
quence of values X1, ..., Xn and a function g(k) for 1 ≤ k ≤
n, compute for all 1 ≤ i ≤ n:

Yi = min1≤k<iXk + g(i− k). (1)

It can be shown that certain dynamic programming algo-
rithms, including algorithms for the edit distance problem
and algorithms used in geology [4] and in speech recogni-
tion [3], can be reduced to this simple computation. The
straightforward algorithm for computing Eq. 1 takes O(n)
time per i, which amounts to a total of O(n2) time over all
i.

Previous algorithms for this problem focused on specific
types of the function g(·) (usually referred to as the gap
function), e.g. those that satisfy the quadrangle inequal-
ity [1, 5, 2] or the inverse quadrangle inequality [1]. None of
these algorithms produce the correct answer when g(·) does
not satisfy their assumptions. In this paper, we develop a
combination of these approaches that works for all inputs,
but has a running time that depends on the function g(·) in
a natural way.

All logarithms in this paper are in base two.

2. THE CONVEX AND CONCAVE CASE
In this section we describe the algorithm of [1] for the convex
case. We do not explicitly consider the concave case, since
it is essentially analogous.

Consider the case when g(·) is a convex function, that is
a function which increases at an increasing rate. In other
words, given a < b the following residues are implicitly
sorted:

g(b + c)− g(a + c) ≤ g(b + c′)− g(a + c′) for 0 ≤ c ≤ c′.

Now consider the line 1, 2, ..., n. We will assign to each
point i on this line the value Y [i], i.e. the combination that
achieves the minimum for a given i in Eq. 1. Observe that
we can represent Y [i] with Xk, since given some Xk and
i the choice of gap is implicit (i.e. g(i − k)). For each i
in the list we would like to find the Xk which achieves the
minimum for that i.

Lemma 2.1. If Xk achieves the minimum for some i, but
does not achieve the minimum for i + 1, then it does not
achieve the minimum for any i′ > i.

Proof. Let Xj be the element that achieves the mini-

matcos -13 Proceedings of the 2013 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 10-11 October 9



mum for i + 1. Then:

Xk + g(i + 1− k) ≥ Xj + g(i + 1− j)

Xk −Xj ≥ g(i + c− j)− g(i + c− k).

Which holds for all c ≥ 1, since the residues on the right-
hand side at most decrease.

What follows from Lemma 2.1 is that each element from X
occupies at most one interval on our line i = 1...n.

We would also like to know, given two elements Xk and Xj

and j < k, for which gap values will Xk be smaller than Xj .
This leads to the inequality:

Xk + g(a) ≤ Xj + g(b) ∀b, a : b− a = k − j.

Rearranging this gives us

Xk −Xj ≤ g(k + c)− g(j + c).

We can now find the maximal value of c for which the in-
equality still holds in O(lgn) by employing binary search.

Now we are ready to describe the algorithm. First we assign
X1 as the interval that covers the entire line. Then, the al-
gorithm works by traversing the list of candidates X2, ..., Xn

and comparing the current candidate Xk with the element
Xj , which corresponds to the rightmost interval on the line.
One can now determine for which values of i the new candi-
date is better, and the interval can be updated. In the case
that the new candidate is better than the previous one for
the entire interval, we simply remove the old candidate, and
repeat the process on the rightmost remaining interval.

In order to analyze the time required by the algorithm, we
note that each new candidate from X will perform at least
one binary search, which takes O(lgn) time. Multiple binary
searches may be performed once intervals are removed from
the rightmost end of the line, but observe that each element
X is only added once, so after being removed it is never
reinserted. Therefore, the algorithm takes O(n lgn) time.

3. ALGORITHM
Observe that the function g only takes on integral inputs.
Therefore, we can consider a more general computation:
given a sequence of values X1, ..., Xn and a sequence of val-
ues G1, ..., Gn for 1 ≤ k ≤ n, compute for all 1 ≤ i ≤ n:

Yi = min1≤k<iXk + Gi−k. (2)

This allows us to do away with the strict convexity require-
ments. Consider the sequence of values:

G2 −G1, G3 −G2, ..., Gn −Gn−1.

In a preprocessing step, we can traverse this sequence to
discover blocks which contain elements in ascending (resp.
descending) order. These are precisely the regions of the
“function” which are convex (resp. concave). Build the list
L which, for each block, contains an element (start, end, asc)
that stores information about the block boundary (start,
end) and whether the block is in ascending (asc = 1) or de-
scending (asc = 0) order. Let us denote the number of such
blocks b1, b2, ..., bB by B, and let |bi| denote the number of

elements in block bi. Observe that 1 ≤ B ≤ n/2, since two
elements form either an ascending or descending sequence,
and in the case B = 1 the “function” is either convex or
concave. This step takes O(n) time, and allows us to par-
tition G into disjoint intervals where the property of sorted
residues holds.

The algorithm works by moving through the list L and for
each block (start, end, asc), it finds the optimal combinations
of Yi = Xk + Gi−k whenever i − k is inside the interval
(start, end). Once these combinations have been found, they
are stored as Yi if they are lower than the current value and
the algorithm moves onto the next block, where the same
process is repeated. Observe that these subproblems can
be solved by a slight modification of the algorithms from
[1], where we use the convex algorithm if asc = 1 and the
concave algorithm otherwise. Once we solve the subproblem
in a block, we will not revisit it and so the space can be
reused. The algorithm requires O(n) extra space, which
matches the space requirements of [1].

The time required to solve the subproblem on block bi comes
from the algorithm described in Section 2. In our case, the
binary search is performed on bi, so the time is O(n lg |bi|).
Over all subproblems the time becomes:

O(n

B∑
i=1

lg |bi|).

Turning the sum of logarithms into the logarithm of the
product we get:

O(n lg(

B∏
i=1

|bi|)).

Assume B is fixed. Since the logarithm is a monotonically
increasing function, the time is maximized when

∏B
i=1 |bi| is

maximized. Recall that the geometric mean is less than or
equal to the arithmetic mean. Then we have:

(

B∏
i=1

|bi|)1/B ≤ n/B

(

B∏
i=1

|bi|) ≤ (n/B)B .

Thus, we can upper bound the time by O(Bn lg( n
B

)). Re-
gardless of G, the time is never worse than the straight-
forward O(n2) algorithm, and achieves the O(n lgn) bound
when B = O(1). If the elements of G come from a function
g(·), which is defined in the domain [1, n], then B can be
upper bounded by the number of inflection points1 of g(·)
in that region. Recall for example, that a polynomial of de-
gree d has at most d− 2 inflection points. Therefore, if the
values in G come from a polynomial, we can upper bound
the running time by its degree.

4. FUTURE WORK
Since we are no longer working with functions explicitly, but
rather sequences, we can also obtain a speedup by working
on X in an analogous way. For example, we could traverse X

1These are points where convexity changes into concavity
and vice-versa.
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and find blocks, then decide to use either X or G, whichever
has fewer blocks. However, in most dynamic programming
applications, the minimum computation that we study is
used as a subroutine. In these cases, X changes between
calls to the subroutine, whereas G remains static. Hence,
it makes sense to analyze G, especially since it tends to
be a particular mathematical function. However, working
on X would have its merits if one could show that, for a
given application, the number of blocks B in X between
subroutine calls can be bounded by some value.

Similar techniques could perhaps be applied to other dy-
namic programming algorithms that operate on the (min,+)
semi-ring. One notable example is (min,+) matrix multipli-
cation.

5. REFERENCES
[1] Z. Galil and R. Giancarlo. Speeding up dynamic

programming with applications to molecular biology.
Theoretical Computer Science, 64(1):107 – 118, 1989.

[2] D. S. Hirschberg and L. L. Larmore. The least weight
subsequence problem. In Proceedings of the 26th
Annual Symposium on Foundations of Computer
Science, SFCS ’85, pages 137–143, Washington, DC,
USA, 1985. IEEE Computer Society.

[3] D. Sankoff and J. B. Kruskal. Time warps, string edits,
and macromolecules. Cambridge University Press,
Cambridge, England, 2000.

[4] M. S. W. T. F. Smith. New stratigraphic correlation
techniques. Journal of Geology, (88):451 – 457, 1980.

[5] F. F. Yao. Speed-up in dynamic programming. SIAM J.
on Alg. Discr. Meth., (3):532 – 540, 1982.

matcos -13 Proceedings of the 2013 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 10-11 October 11



matcos -13 Proceedings of the 2013 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 10-11 October 12



An Algortihm for Recognition of Position Repetition in
Chess

Nándor Németh
Eötvös Loránd University

Department of Software Technology and Methodology
nem.nandor@gmail.com

ABSTRACT
A chess game ends in draw if the same position appears for
the third time. In a chess program, we need to implement
this rule to avoid losing some winning positions, and not
to lose positions, where we have the possibility to make the
match a draw. Recognizing position repetitions is not trivial
problem. The algorithm must run in most of the positions
we reach in the game tree, so it must run quickly. We can
read about a lot of algorithms which recognize the repeti-
tions. There are two groups of these algorithms: correct
ones, and statistically correct algorithms having faster so-
lutions. This paper demonstrates a correct solution which
is simpler and faster than any other correct algorithm, and
it can work with any board representation. We can check
some statistically correct algorithms quickly with a correct
method. Therefore we can get a more faster correct algo-
rithm for the problem.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Applications and Expert
Systems—games

General Terms
Algorithms

Keywords
chess programming, position repetition, move sequences

1. INTRODUCTION
Among the laws of chess, we can find rules which guaran-
tee that games must end in finite moves. One of them is the
rule of the position repetition. When the same repetition ap-
pears at the third time on the board, any of the players can
ask for a draw. Although the fifty-move rule is easily imple-
mentable in chess programs, the algorithms for recognizing
position repetitions are very complex and slow. Therefore,
some chess programs omit this rule. This can cause some

enormous mistakes, roughly in every second game. Nowa-
days we can find several solutions for the problem in sophis-
ticated chess programs[2]. Some of the programs use correct
algorithms for the problem. Others use statistically correct
methods which run faster, and rarely make mistakes. In
this paper, the author demonstrates a new correct method
for the problem.

2. DEFINITIONS
To understand this paper more easily, let us describe some
definitions:

Two positions are identical if each square of the board con-
tains the same piece, the same player has to move, and the
move sentences, the payers can make, are identical, too.

The normal search tree is a graph. The root vertex is the
position we can see on the chessboard. The other vertices are
the positions the program reaches during the search. The
edges represent the moves. Let us extend this tree with all
the positions which have appeared on the chessboard during
the chess game. So, the root vertex of the new graph is
the initial position. In this paper, let us name this graph
extended search tree.

There are moves, such as pawn moves or captures, when
the position before the move can not be created after the
move. Let us say them boundary moves in the extended
search tree. Let us name the position after a boundary move
boundary position. To use the definitions more easily, name
the initial position boundary, too. Therefore, all positions
are boundary or have a boundary position created previously
in the extended search tree.

The examined position is the position which is just examined
by the chess program.

3. ALGORITHMS REALIZED IN
WELL-KNOWN PROGRAMS

There are some solutions for recognizing position repeti-
tions[2]. The programs usually recognize the first repetition.
It is enough for the correct control. If one of the players can
make a better move than making a repetition, then the rep-
etition will not appear on the board. If one player can make
a repetition independently from the opponent, then he can
produce easily the position at the third time, too. There-
fore, it is enough to find the first repetition, and it is not
neccessary to wait for the second one. In such a way, the
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problem was simplified greatly. The neccessary search depth
for recognizing repetitions is reduced to half of the original
depth.

Figure 1: In the original case there are 8 plies nec-

cessary, but 4-ply search is sufficient for recognizing

the first repetition

There are two groups of the algorithms we can find in chess
programs[2]. The correct methods recognize the repetitions
exactly. The other methods are only statistically correct
ones. Although they make mistakes, they need shorter run-
ning time.

3.1 Correct algorithms
All of the correct algorithms are based on two control meth-
ods, the position comparing control or the move control.
Both of them run in linear time. Of course, we must exam-
ine all of the positions or moves after the last boundary posi-
tion in the extended search tree. Therefore, the algorithm’s
running time depends on the number of the moves after the
boundary position, linearly. This type of the algorithms can
result significant slowdowns in some move sequences, when
there are no pawn moves, or captures.

3.1.1 Board-comparing methods
The easiest way for the problem is the comparsion of the
examined position to the previous ones. The more bits define
the chess board, the slower the algorithm is. There are some
methods to optimize the algorithm. Of course, we need to
investigate only every second position. We can first check for
example the last move’s target square, and next the whole
table, if there is a same type of piece on this square.

3.1.2 Computing repetitions from move sequences
In the Axon chess program there is a very interesting algo-
rithm [4] which uses only the moves for recognizing position
repetitions. Let us see the move sequence from the last
boundary to the examined position. We can easily reverse
this sequence. The program investigates this reverse move
sequence.

When the program scans the reverse moves sequentially, it
updates a data structure that stores some information about
the moved pieces. In one reverse move a piece can start a
new journey, continue its journey or reach its original posi-
tion. If a piece starts a new journey, the program stores the

piece’s original and actual square. If a piece continues its
journey, then the program modifies its actual square. When
a piece reaches its original position, then the program deletes
its record from the data structure. When all of the pieces
moved reached their own original position, there isn’t any
record in the data structure. So, the program recognizes a
position repetition. Of course, the algorithm can manage
the swap of two identical pieces.

To understand this method, let us see a simple example: an
examined position, and a reverse move sequence. In Table
1 we can see, what is stored in the data structure during the
running of the algorithm.

Figure 2: The examined position

The reverse move sequence is:

Q H6-G5, K H8-G7, Q G5-H6, K G7-H8, (...)

Table 1: The data structure during the reverse

moves
Reverse move The records Numbers

Q H6-G5 Q H6-G5 1
K H8-G7 Q H6-G5, K H8-G7 2
Q G5-H6 Q H6-H6, K H8-G7 2

- K H8-G7 1
K G7-H8 K H8-H8 1

- - 0

3.2 Statistically correct algorithms
There are some algorithms which are faster than the cor-
rect methods, but they make mistakes occassionally. Most
of them use hash keys, and hash tables[5, 3]. If the algo-
rithm uses hash tables, it can run in constant time[3]. This
is a great advantage against the correct methods in long
capture-, and pawn-move-free move sequences. The pro-
gram doesn’t make really big mistakes frequently, because
mistakes occur rarely, and only a few mistakes cause bad
move on the board, most of them are disappear because of
the minimax algorithm.

4. THE NEW ALGORITHM
The paper shows an algorithm based on the method of the
Axon chess program[4]. The algorithm uses the reverse move
sequence, and the examined position, too, to recognize the
repetitions. It investigates every reverse move. If all moved
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pieces during the reverse moves reach a square which con-
tains the same type of piece in the examined position, then
the position is repeated. Let us name the pieces which are
standing on a square which doesn’t contain the same type
of piece in the examined position as moved pieces. In the
examined position the number of the moved pieces is zero.
When it will be zero again, the algorithm finds a repetition.
Sometimes it can happen that two identical pieces swap their
position. In this case there can be repetition. Therefore, if
a piece reaches a square which contains a same-type piece
in the examined position, the algorithm considers it as the
end of its journey.

This number is similar to the number of the records in the
Axon. The great observation is that we need no data struc-
tures, only this number, to recognize repetitions.

4.1 The basis of the algorithm
The algorithm modifies the number of the moved pieces in
every reverse move. When the algorithm starts to make a
move, it investigates the from-square of the move. If the
square in the examined position contains a piece which has
the same type as the moving piece, then a piece starts a new
journey, so the number of moved pieces increases by one. In
other cases, its value doesn’t change.

The algorithm then investigates the to-square. If it contains
a same-type piece in the examined position, a piece ends its
journey. Therefore, the number of moved pieces decreases
by one. In other cases, its value doesn’t change.

So, we have 2 · 2 = 4 cases. In the first case, the moving
piece starts a new journey, and it doesn’t finish the journey
at the end of the move. Then, the algorithm increases the
number of the moving pieces by one.

In the second case, when a piece ends its journey. Of course,
the algorithm decreases the number by one.

In the third case, when a piece continues its journey. So,
it has some moves, but it may make a big tour before it
finishes its journey. In this case the number of the moving
pieces doesn’t change.

The fourth case can happen very rarely. In this situation, a
piece starts its journey, and ends it at the end of the move.
In this case, the number of the moving pieces increases and
decreases at the same time, so its value doesn’t change.

This algorithm is enough for managing the number of the
moving pieces. Its great advantage is that it needs no extra
data structure. It can manage the swapping of the pieces
similarly with a piece which reaches its starting square dur-
ing the reverse moves. In the Axon chess program the pro-
grammers had to implement two different algorithms for the
problem. The running time of the algorithm is stable. In
the Axon, the running time depends on the number of the
moved pieces.

The running of the algorithm is usually similar to the run-
ning of the algorithm of the Axon. In Figure 2, the two
algorithms are similar, but the new one uses only one num-
ber. Let us see, how the algorithm works, when two identical

pieces swap their positions. In the example, only the white
moves are shown. The coloumn ”Cases” shows which of the
four cases is applied.

Figure 3: Swap of two knights

The reverse move sequence is:

N C5-E6, N E6-F4, N D3-C5, K F4-C5, (...)

Table 2: The modifying of the number of the moving

pieces

Reverse move Moving pieces Case
- 0 -

N C5-E6 0 + (1 + 0) = 1 1
N E6-F4 1 + (0 + 0) = 1 3
N D3-C5 1 + (1− 1) = 1 4
N F4-C5 1 + (0− 1) = 0 2

4.2 Optimizing the algorithm in array-based
board representation

The algorithm is good, but we can do some optimizations.
The program must stop the reverse moves at the point,
where the algorithm recognized the repetition, or where there
can’t be any repetitions. When there are less than four plies
distance from the last boundary position to the examined
one, then players can’t make repetitions. Sometimes a lot of
pieces move. If there isn’t the neccessary number of moves
to end all of the moved pieces’ journey, then the algorithm
stops the search for repetitions. Considering the fact that
only every second position can be identical with the exam-
ined position, it is better if the algorithm investigates two
plies during one running of the body of the loop.

4.3 The method with bitboard representations
We can define a condition(piece,square) boolean function
which gives true if the square contains piece-type piece in
the examined position, and gives false in other cases. With
this function, we can generalize the algorithm for any type
of board representation[1].

If a program uses bitboard representation, the function can
be seen as follows: Let us consider the bitboard which stores
the position of the piece-type pieces. Let us make an other
bitboard which has only one non-zero bit. This bit is the bit
of the square. If the algorithm uses the xor binary operator
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in this bitboards, the result is nonzero if and only if there is
a piece-type piece in the square at the examined position.

5. ANOTHER USE OF THE NUMBER OF
THE MOVED PIECES

In some situations the programs can evaluate the positions
better, if it calculates with the measure of the change of
the position. This defines a distance between two positions.
The number of the moved pieces is one approximation of its
value.

In the opening moves, the players try to move a lot of pieces
to make an open position. In this part of the game, there are
some pawn moves, too. So, we must extend the algorithm.

In the endgame, when there are long move sequences without
pawn move or captures, the nearly constant position implies
the draw. If a few pieces move within several plies, it seems
none of the players can make a really good attack. In this
case the program does well to use modified distance in some
cases. Its reason is that if the original distance is zero, but
not the same player has to move, then at least 5 plies must
be between the two positions.

Such a use of the number of the moved pieces needs further
research.

6. THE RESULTS
6.1 The test program
A test program has been written to compare some algo-
rithms for recognizing the repetitions. The compare made
in several search depth, with alpha-beta and simple minimax
methods[3]. The program used all positions which appeared
in 2010 at the Linares International Chess Tournament. It
runs the minimax algorithm at all the positions, and mea-
sures the running times.

6.2 Comparsions with other algorithms in av-
erage case

In an average case, the new algorithm needed almost half the
time comparing to the Axon’s method[4]. The other correct
algorithms had a little bit more longer running time. The
statistically correct methods were a little bit faster. Their
great advantage is that the hash keys are needed in other
algorithms[3], so the slowdown of the program is smaller
than that of the correct methods.

The type of the pruning also modifies the running time. The
minimax method needs relatively the most extra time if the
program uses repetition recognizing algorithm. The alpha-
beta method needs less time. Its reason is the following:
when the program uses pruning, the number of investigated
long move sequences without captures and pawn moves is
less.

The author investigated the running time difference between
a chess program that uses the new repetition recognizing
algorithm, and another one that doesn’t use any repetition
recognizing algorithm. The program runs a little bit slower
with the algorithm. The difference reduces by the growing
of the search depth. The reason may be that the repetition

recognizing algorithm prunes branches from the search tree.
If the program uses greater search depth, the algorithm can
prune longer branches.

6.3 Running time with long move sequences
The algorithm’s running time can move up to 15 times longer
than in average cases. The Axon’s algorithm needs time 3
times longer than the new algorithm. Therefore the algo-
rithm used in Axon is not considered as a linear running-
time algorithm. This result was expected.

6.4 Using the algorithm to control statistically
correct methods

Some statistically correct methods make mistakes only if the
examined position isn’t repeated. This type of algorithm can
be controlled with correct ones. With the new algorithm,
the slowdown of the control becomes negligible. Because of
the rare repetitions and the very few number of mistakes,
the mixed algorithm must use only 0.4% more time than a
simple statistically correct method.

7. CONCLUSIONS
The author made a new position repetition recognizing al-
gorithm for chess. The algorithm is demonstrably correct.
Its running time is linear, as the other correct algorithms.
But it is faster than other correct methods. Programs can
use the algorithm to control some statistically correct algo-
rithms. This mixed algorithm is correct of course, and has
a running time as fast as simple statistically correct algo-
rithms. So the author could combine the advantages of the
two type of repetition recognizing algorithms.
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suggestions; and to Gábor Gévay, who gave a lot of great
ideas about the algorithm.

9. REFERENCES
[1] Chess programming - board representation.

http://chessprogramming.wikispaces.com/
Board+Representation, 2012. [Online; accessed
07-Sept-2013].

[2] Chess programming - repetitions.
http://chessprogramming.wikispaces.com/Repetitions,
2013. [Online; accessed 07-Sept-2013].

[3] T. Marsland. Computer chess and search. Technical
report, Computing Science Department, University of
Alberta, 1992.

[4] V. Vuckovic and D. Vidanovic. An algorithm for the
detection of move repetition without the use of
hash-keys. Yugoslav Journal of Operations Research,
17(2):257–274, September 2007.

[5] A. L. Zobrist. A new hashing method with application
for game playing. Technical report, Computer Sciences
Department, University of Wisconsin, Madison,
Wisconsin, 1969.

matcos -13 Proceedings of the 2013 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 10-11 October 16



Comparison between a cache-oblivious range query data
structure and a quadtree

Tine Šukljan
University of Primorska
Institute Andrej Marušič
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ABSTRACT
After the introduction of the cache-oblivious model by Frigo
et al. in 1999, a lot of research has been done about data
structures that work well in multi-level memory hierarchies.
Range reporting, as one of the fundamental problems in
computational geometry, received a lot of attention. As
there was a lot of research done in this area, there are
very little implementation and comparisons between cache-
oblivious and ”non”-cache-oblivious data structures.

In this article we implemented one of the cache-oblivious
data structures for range queries and compared it with the
quadtree. The results show, that the cache-oblivious data
structure answers the queries much faster, but at the ex-
pense of bigger space consumption.

Keywords
cache-oblivious, range queries, quadtree

1. INTRODUCTION
The memory systems in modern computers normally con-
sist of several levels in a hierarchy, typically of cache, main
memory and disk. The access time of different levels vary
by orders of magnitude. To improve the running time of
accessing the data far from the processor, the data are often
moved from the farthest levels to the close ones in big blocks.
It is important to design the algorithms and data structures
to support high locality in the memory-access patterns.

When working in RAM model, one assumes a flat mem-
ory system with uniform access time. Because of that most
of the algorithms and data structures exhibit low memory-
access locality and are not efficient in a hierarchical memory
system. A lot of work has been done in a two-level mem-
ory model (I/O model) introduced by Agarwal and Vitter
in 1988[3] to model the high difference in access time be-
tween memory and disks. Much less work has been done in

multi-level hierarchy, mostly because many parameters are
used in such models to describe the memory levels. Until
the introduction of the cache-oblivious model by Frigo et
al. in 1999[6] that allows obtaining algorithms that are ef-
ficient in multi-level memory hierarchy without the use of
complicated models.

Range reporting is one of the most studied problems in com-
putational geometry. Given a set S in Rd, the problem is to
preprocess S, so that for a given query range q, the points in
S∩q are reported quickly. There exist many types of queries
as axis-aligned boxes, circles, halfspaces. If R2 there exists
special cases like the two-sided and three-sided range report-
ing. In the case of the two-sided range reporting, it consists
of an axis-aligned box with two adjacent boundaries fixed
at ∞ (or −∞ respectively). Similarly, a three-sided range
reporting consists of a axis-aligned box with one boundary
fixed at ∞ (or −∞ respectively). A four-sided query is also
called orthogonal.

In this paper we try to make a comparison of data structures
for orthogonal range queries. Specifically between a classi-
cal data structure for range query which was developed for
the RAM model and a data structure created in the cache-
oblivious model.

1.1 Related work
Much of research has been done about cache-oblivious data
structures for range reporting, range counting and domi-
nance in various dimension after the introduction of the
cache-oblivious model. Most notable were the cache-oblivious
B-Trees structures[5] withO(logB N) search and update time.
All the structures rely intensely on the so-called van-Emde-
Boas layout for storing a balanced constant-degree tree of
size O(N) in memory so that any root-to-leaf path can
be traversed cache-obliviously in O(logB N) memory trans-
fers[7].

Agarwal et al.[2] were the first to develop a cache-oblivious
version of a two-dimensional range tree that answers pla-
nar range queries in the optimal O(logB N + T/B) memory
transfers using O(log2

2N) space. The downside was that B

has to be of the form B = 22c for some non-negative integer
constant c. Later, Arge et al.[4] developed a static cache-
oblivious linear-space data structure for answering two-sided
queries in O(logB N + T/B). Using a simple construction
method, we can also obtain a static cache-oblivious data
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structure for four-sided queries, with the query running time
O(logB N + T/B) and O(log2

2N) space usage. This struc-
ture doesn’t have any assumption about B and it’s much
simpler. In 2009, Afshani et al.[1] proved, that for optimal
query bound, for three-sided range reporting, the structure
has to use Ω(N(log logN)ε) space, where ε > 0.

2. CACHE-OBLIVIOUS DATA STRUCTURE
For the cache-oblivious data structure we chose the data
structure from [4], as it’s the simplest and doesn’t have as-
sumptions about B, and has the same running time. We
first describe the data structure for two-sided queries and
how to construct it. After that we describe the construction
of the data structure for four-sided queries.

2.1 Data structure for two-sided queries
The structure consists of two parts: a sequence L of length
O(N), called the layout, which stores the points of S, with
the possibility of duplicate entries; and a balanced binary
search tree Y on a subset of the y-coordinates of the points
in S, stored implicitly in the van-Emde-Boas layout. Each
leaf in the tree stores a pointer to an element of L. To answer
a query (−∞, x] × [y,∞), a search for y in Y is done and
then the pointer is followed into L. Then a scan forward
over L is performed until an x-coordinate greater than x is
found.

The key point of the data structure is the way the points
are stored in the layout L. Assume that we are prepared
to scan through αT points for α > 1, when answering a
query with output T . We will call it a dense if we scan at
most αT points, and sparse otherwise. Consider the mini-
mum y-coordinate y1 such that there exists a sparse query
(−∞, x] × [y1,∞). Let S0 be a sequence sorted by the x-
coordinate, with y coosrdinate less than y1. As there are
no sparse queries with the y-coordinate less than y1, we can
answer those queries efficiently. As we repeat the step with
the remaining points, we get a concatenation of sequences
S0, S1, ..., Sk of points, with which we can answer all the
queries efficiently. The problem with this approach is that
the space can be more than linear, since the worst case size
is Θ(N).

To reduce the size of the layout we need to store the se-
quences in such a way, that every sequence Si is identical
with Si+1 having a suffix valuse as large as possible. We take
a point with the minimum y-coordinate, such that there ex-
ists a sparse query (−∞, xi]× [yi,∞). Instead of storing all
the points with y-coordinate less than yi, we store only the
points that has the x-coordinate less than xi too. With this
improvement it can be proved that the size of the layout L
is linear:

Lemma 1. [4]Layout L uses at most α
α−1

N = O(N) space.

To answer the two-sided queries we create, in addition to
the leayout L, a binary search tree Y over the y-coordinates
we used to construct L, and store the whole tree using the
van-Emde-Boas layout. Each leaf stores a pointer to the
start of the sequence it produced in L.With both, the tree
Y and the layout L, we can answer two-sided range queries
in O(logB NT/B).

Lemma 2. [4]The layout L and search tree Y can be used
to answer any two-sided range query inO(logB NT/B) mem-
ory transfers, where T is the number of reported points.

2.1.1 The construction
Arge et al.[4] presented a contruction method for the layout.
The basic idea is to store all the points, sorted by the x-
coordinate, in the leafs of a balanced binary search tree,
stored implicitly using the van-Emde-Boas layout. All the
internal nodes carry additional information about the actual
points in the subtree. Then using the sweep line approach;
starting from −∞, we sweep a horizontal line upwards across
the plane. Each time the sweep line is at point p, we traverse
the tree leaf-to-root and update all the nodes on the path.
After this step, we have to check in the root of the tree, if
there exists a sparse query. If it does, we have to traverse a
root-to-leaf path (specified by the information in the internal
nodes), to find the point, we use to create the tree Y. The
whole process was proved[4] to take O(N logB N) memory
transfers.

2.2 Data structure for four-sided queries
We first explain how to construct a data structure for three-
sided queries, as it is a step to construct the data structure
for four-sided queries. Our three-sided structure consists of
a balanced binary tree T with the points in S stored at
the leaves, sorted by their x-coordinates. T is laid out in
memory using the van-Emde-Boas layout, so that a root-to-
leaf path can be traversed cache-obliviously in O(logB N)
memory transfers. For each internal node v in T , let Sv be
the points of S stored in the subtree rooted at v. We store
the points in Sv in two secondary structures, Lv and Rv,
associated with v. Lv is a structure for answering two-sided
queries of the form (∞, x] × [y,∞) (with the x-opening to
the left); Rv is a structure for answering two-sided queries
of the form [x,∞)× [y,∞) (with the x-opening to the right).

Each point is stored in two linear space structures on each
of the O levels of the tree T , the structure uses O(N log2N)
space. To answer the query [xl, xr] × [yb,∞), we take the
first node v such that xl is contained in the subtree rooted
at he left child l, and xr is contained in the subtree rooted
at the right child r. Then we query Rl with the query range
[xl,∞)× [yb,∞) and Lr with the query range (infty, xr]×
[yb,∞).

To construct the data structure for four-sided queries, we
need to apply the same method again. We store all the
points, this time sorted by the y-coordinate, in a balanced
binary tree, stored using the van-Emde-Boas layout. For
each internal node v, let Sv represent the points from S
stored in the subtree rooted in v. We store the points in
Sv in two secondary structures Uv and Bv, associated with
v. Uv is a structure for answering a three-sided query of the
form [xl, xr]×[y,∞); Bv is a structure for answering a three-
sided query of the form [xl, xr]× [y,−∞). This construction
adds another factor of O(log2N) to the space complexity,
to get the final O(N log2

2N) space complexity of the data
structure for four-sided queries.

3. RESULTS
As we implemented the mentioned data structures, we no-
ticed that the construction algorithm rely heavily on root-
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Table 1: Comparison between the cache-oblivious data structure (C-O) and the quadtree (QT).
Construction time Query time Size

Number of points C-O QT C-O QT C-O QT
100.000 30 s 0,06 s 5 ms 43 ms ∼1 GB 2MB
200.000 69 s 0,12 s 28 ms 90 ms ∼2,5 GB 4MB

1.000.000 7,5 min 0,7 s 132 ms 453 ms ∼7 GB 24MB
2.000.000 17 min 1.5 s 413 ms 951 ms ∼16 GB 50MB

10.000.000 ∼2 h 22 s 2817 ms 6259 ms ∼80 GB 300MB
100.000.000 ∼8 h 115 s 32523 ms 341282 ms ∼950 GB 3,5GB

to-leaf and leaf-to-root traversals. Each computation to
find the index of the parent/child of a specific node takes
O(log2N) time, so we decided to precompute the indexes
for all the topologies of the trees, which drastically reduced
the construction time.

We decided to compare the cache-oblivious data structure
with a quadtree, probably the most used data structure
for range queries in the RAM model. We compared the
query time, construction time and the size of the data struc-
ture. We tested on problems of different sizes, varying from
100.000 to 100.000.000 points. All the coordinates were ran-
dom 32-bits decimal numbers. All the queries were of type
(−∞,∞) × (−∞,∞), so all the points had to be returned.
All the tests were run five times and the average results are
shown in Table 1. All the tests were run on a Core 2 Duo @
2.53 GHz and 4GB of RAM.

From the results of the tests, it can be seen that the cache-
oblivious is much faster in answering the queries. The shaded
cells in Table 1 show, that the data structure for that specific
size was already bigger than the available main memory, so
swapping occured. Note, that because of high locality for
the cache-oblivious data structure, swapping didn’t affect it
as much as it affected the quadtree.

On the other side, the size of the whole cache-oblivious data
structure is much bigger than the quadtree. The main reason
is that even if the key ingredient of the cache-oblivious data
structure (the two-sided data structure) has linear space
complexity, we need a lot of them (O(log2

2N) exactly). When
N is getting bigger, this factor is not negligible.

The difference in the construction time is probably of the
least importance, as the cache-oblivious data structure is a
static data structure, so it can be precomputed. Despite
that, it is interesting to notice, that 2/3 of the construction
time is sorting the points, as the four-sided data structure
needs the points sorted by their y-coordinate, the three-sided
needs them sorted by their x-coordinate. So for every three-
sided data structure we need to sort all the points. The same
happens for every two-sided data structure, as it needs them
sorted by their x coordinate.

4. CONCLUSIONS
This is the first imeplementation of this data structure to
the author’s knowledge. It can be seen from the results,
that the cache-oblivious data structure, once constructed, is
not affected by the swapping of blocks made by the oper-
ating system, as the theory suggested. On the other side,
to achieve that, the implemented solution takes a lot more

space. So there is actually a trade-off between the speed of
the queries and the space.
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ABSTRACT
In the field of computer engineering, there are a lot of prob-
lems that are too time-consuming like biological or physical
calculations and that’s why they have to be implemented
using special hardware structures. Usually, these hardware
structures are described in HDL (Hardware Description Lan-
guage). Developing in HDL languages is not as efficient as
it would be in case of software languages due to its low level
structures.

The aim of this work is to implement and test a method
(a compiler program), where the starting point is a code
written in the functional language Haskell and the output
is the same algorithm in VHDL (a kind of HDL) language.
The main advantage of the novel method presented in this
paper is that it generates a synthesizable VHDL description
from Haskell code automatically for FPGA implementation.

The method introduced in this paper can solve two sepa-
rate problems: 1) running algorithms effectively in FPGA,
2) development of digital hardware implementing a speci-
fied function. We demonstrate the efficiency of the method
through practical examples like a part of the MP3 decoding
algorithm.

Categories and Subject Descriptors
C.3 [Special Purpose and Application-based Systems]:
Real-time and embedded systems; D.2.2 [Software Engi-
neering]: Design Tools and Techniques

Keywords
HLS, FPGA, Haskell, VHDL, dataflow graph
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Department of Control Engineering and Information Tech-
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1. INTRODUCTION
Although the speed of the conventional processors is growing
continually, there are a lot of problems that are too time-
consuming like biological or physical computing and that’s
why they have to be implemented in a more efficient hard-
ware structure and sometimes in special hardware. Usually,
these hardware structures are described in HDL (Hardware
Description Language). These languages are not so well-
known by the mathematicians and software engineers, they
usually write the algorithms in general-purpose program-
ming languages. There is a great difference between using
HDL or software languages, and the chance to transform
these two representations into each other is rather small. To
overcome this gap, there is plenty of research that are very
important parts of the so called System Level Synthesis.

Hardware synthesis starting with a functional software lan-
guage has some advantages compared to a hardware descrip-
tion language. Besides, modifying the hardware when the
algorithm changes is easier, because a code written in func-
tional language can be adapted more directly than one writ-
ten in a hardware description language. Transforming an
algorithm to HDL can be easily automated by the novel com-
piler program introduced in this paper. The program code
written in functional language can be run in PC, therefore
it can be tested easily. In contrast to this, the hardware de-
scription languages require a complex simulation for testing,
where the inputs and outputs are handled as digital signals,
which is an additional complication.

Based on the above arguments, the aim of this work is to
implement and test a method (a compiler program), where
the starting point is a code written in a functional language
and the output is the same algorithm in HDL language.
Functional languages have benefits in case of digital signal
processing and it fits the capabilities of the hardware world
better than the imperative ones. I focus on the Haskell [9]
functional language, which is being developed dynamically,
and it supports the research work well.

The main advantage of the method presented in this paper
is that it generates the synthesizable VHDL [6] description
from Haskell code automatically for FPGA implementation.
Even a pipeline optimization tool can be involved by the pro-
cedure such as the high level synthesis tool PIPE, developed
at the Department of Control Engineering and Information
Technology in BME.
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We demonstrate the efficiency of the method through prac-
tical examples like a PID controller and a part of the MP3
decoding algorithm.

For the method, we defined the following requirements:

1. compile Haskell to VHDL code automatically

2. notify the user about the error details in case the code
cannot be compiled

3. make the compiler program modular, so that its parts
can be used separately

4. ensure that pipeline optimization methods can be in-
cluded if necessary

5. the operation set should be dynamically extendable,
without modifying the compiler program

Among some functional languages (Lava [3], µFP [12], Ruby
[5], SASL [4]) that can use to generate HDL code, the most
similar project is the CλasH (CAES Language for Synchronous
Hardware) [2, 7], nevertheless it meets only the first two
requirements from the above list. However, the purpose of
CλasH is different from the method introduced in this paper.
Although, CλasH is based on Haskell syntax, it is a hardware
description language, in contrast to our method where the
purpose is a language without hardware concepts. CλasH
also has some disadvantages compared with the method in
this paper. It has no pipeline optimization stage, and it can
not include external optimization methods, as it doesn’t use
dataflow graphs as intermediate representation. The opera-
tion set is constant, thus new operations can not be added
dynamically.

The method and the compiler program introduced in this
paper meets Requirement 1, as it compiles the code auto-
matically. In our method the GHC frontend is used to pre-
process the source code that includes the parser, lexer and
the generation of the abstract syntax tree. Therefore, re-
porting of the compiler errors (Requirement 2) is ensured
by GHC. Our method is based on modular structure: it is
divided into frontend and backend parts, and these parts
consist of inner stages as it will be detailed later (Require-
ment 3). Between the frontend and backend, the interface
is a dataflow graph, which is an intermediate representation
of the algorithm. Most of the pipeline optimization sys-
tems are based on dataflow graphs, therefore these stages
can be included in our system (Requirement 4). An exter-
nal database is used as operation set, therefore expanding
the set of operations dynamically is simple (Requirement 5).

2. THE PROPOSED COMPILER
ARCHITECTURE

In this section the architecture of our Haskell to VHDL com-
piler system will be introduced.

The structure of the compiler method is shown in Figure
1. As it can be seen, the structure is divided into frontend
and backend parts. The first is the Haskell-EOG compiler,
which produces the elementary operation graph (EOG) [1] as
intermediate dataflow representation. EOG is a kind of well

OperationSet
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VHDLhcode

Hardware

Externalhsoftware

Haskell-EOG
compiler

EOG-VHDL
compiler

FPGAhsynthesizer

Algorithm
writtenhinhHaskell

FPGAhconfiguration

OpVhdlMap

FOpMap

VhdlModules

Compiler

User

Compiler
parameter

HLShoptimization

Figure 1: The structure of the compiler method

known homogeneous synchronous dataflow (HSDF) [8, 11]
graph, where the vertices are the operations and the edges
are dataflow links. In this representation, HLS optimization
stage can be included, such as the HLS system PIPE [1].
After the optional optimization, the EOG-VHDL compiler
as backend part will produce the expected VHDL output.
From VHDL, an external FPGA development software can
synthesize the FPGA bitstream, which can result in a real
FPGA application.

2.1 Haskell-EOG compiler
The frontend of our compiler takes the source code written
in Haskell, and produces the EOG via the successive stages
introduced in this section.

Stage 1. Produce the AST Core
The first steps are to parse and analyze the code, and pro-
duce the abstract syntax tree (AST). These steps are made
by the GHC frontend, which produces the GHC Core [13]
tree. This Core tree mostly consist of the following type of
nodes: Lit (constant literal), Var (using of variable), App
(lambda application, a.k.a. function calling), Lam (lambda
abstraction, a.k.a. function body) and Case (branching). In
the further steps of the frontend pipeline these nodes have to
be converted to EOG nodes and edges by successive graph
transformations.

Stage 2. Eliminate of the branching
The second step is to eliminate all of the branching (Case)
nodes from the Core. During the elimination every branch
is to be converted to a special function calling (App) node,
which performs the branching as a black box. This step is a
so-called Core2Core transformation, as its input and output
are Core trees with the same structure.
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Stage 3. Produce the operation dependency tree
The operation dependency tree (ODT, here which is an in-
termediate data structure between the Core and the EOG
representation) consists of the operation nodes and the de-
pendency edges between the operations. Two types of nodes
are defined in this tree: operation nodes and pointer nodes.
An operation node has as many children as the number of
its operands. A pointer node is always leaf and it can be
considered as a reference to an operation node. If an oper-
ation node has a pointer node child, it will mean the same
function as its child would be the operation node referenced
by the given pointer node.

Producing the ODT is the largest part of the Haskell-EOG
compiler. The main concept is supercompilation [10], where
the idea is to travel the Core tree in the same order as the
CPU would process the statements of this functional code.
During this graph traversal, the following conversions are
performed to produce the ODT (as the output tree) from
the Core description:

• Var is transformed to pointer node in ODT

• Lit is transformed to constant operation node in
ODT

• App (if it is elementary) is transformed to elemen-
tary operation in ODT

• App (if it is complex): the body of the function must
be inlined, and the nodes contained by the inlined tree
has to be processed as every other node

• Lam can be eliminated without restriction

• Case nodes have already been eliminated in Stage 2

Stage 4. Produce the EOG
The final step in the Haskell-EOG compiler is to transform
the ODT to elementary operation graph, which is a sim-
pler process, than the previous stages were. Every opera-
tion node in ODT will also be operation in EOG, and every
dataflow link will also be link in EOG. The difference is that
the pointer nodes must be resolved, and it has to be substi-
tuted by the operation node referenced by the pointer node.
In practice, if the end of a link is a pointer node, this end
has to be replaced by the referenced operation node. After
this transformation, the dataflow structure is obtained, not
necessarily being a tree anymore.

2.2 EOG-VHDL compiler
The architecture of the EOG-VHDL compiler, which is the
backend of the whole method and system introduced in this
paper, can be seen in Figure 2. First, the EOG goes through
a preprocess task (Preprocess EOG in Figure 2), which
collects all of the information about the EOG nodes, then
saves it into the store Operations. Another task (Make
ModuleList in Figure 2) creates the store ModuleList,
which will contain all of the necessary information about
the modules used in the input EOG. These modules have
to exist in the external OperationSet, because the Make
ModuleList task loads the information from that for each
operation.

From the two stores created before, the produce tasks will
generate the parts of the VHDL output. All of the used

Elementary operation graph

OpVhdlMap
VhdlModules

Preprocess
EOG

Make
ModuleList

Produce
Components

Produce
Signals

Produce
Operations

Operations ModulList

Generate
VHDL

TopModule
Template

OperationSet

VHDL top module

Figure 2: EOG-VHDL compiler

operations will result in component declarations in VHDL
(it is generated by the Produce Components task). Each
EOG operation will result in component instantiation and
each dataflow link will result in signal declarations, which
interconnect the component instantiations. These parts are
generated by the Produce Operations and Produce Sig-
nals tasks in Figure 2.

Finally, the Generate VHDL task creates the output VHDL
(the top module), from the produced VHDL parts discussed
before.

The EOG-VHDL compiler produces a single, structural VHDL
file, which contains only certain types of language structures:
component and signal declarations and component instan-
tiations. The behavior of the components are defined in
VHDL files separately component-by-component (these files
are stored in the OperationSet).

3. MULTI-RATE EXTENSION
The EOG, previously used as an interface between the com-
piler frontend and backend, is a single-rate dataflow graph,
which is a huge restriction. EOG can only represent dataflow,
where each operation is performed once during one restart
of the system (in other words: it is performed once for each
input of the system). Although, certain loops can be im-
plemented in that case too, it is not an efficient way due to
the increasing number of operation nodes. (for example, if
a loop iterates between 1 and 5, the operations of the loop
body have to be replicated 5 times) For overcome this re-
striction, a modified EOG is introduced, where groups of
operations can be performed in different number of times
during one restart period.

The extended version of EOG introduced in this section is
called multi-rate EOG (MR-EOG). In MR-EOG, groups of
operations (blocks) can be defined, where each block con-
tains one or more operations and optionally other block(s).
In this way the blocks are built up in a hierarchy, and the
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top of the hierarchy is a block denoted by TOP in further.

a

b
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c

e

d

f

k

h j

Figure 3: MR-EOG

An example can be seen in Figure 3. Here the block TOP
contains the operations a, i, j and k, and two inner blocks.
One of that contains the operations g and h, and the other
contains b, e and f, and its inner block contains the opera-
tions c and d.

For the new multi-rate representation, there is an important
purpose: ensure that the general algorithms performed in
dataflow graphs (such as pipeline optimization algorithms)
can also be used in MR-EOG. The solution is running the
algorithms recursively, starting with the innermost block.
Since the innermost block does not contain inner blocks, the
methods developed for a single-rate dataflow graph can be
performed without restriction. If the algorithm finish with
a given block, the block has to be substituted by a virtual
operation. The execution time of this operation will be the
same as the execution time of the whole block was.

When a block contains only operations (including virtual
operations), the same algorithm can be run on it. In the
end, even the block TOP is performed, and the algorithm is
finished for the whole MR-EOG hierarchy.

4. SOME CHARACTERISTIC TASKS FOR
TESTING

We implemented the compiler program based on the method
introduced above in Haskell language. For testing the func-
tionality, two characteristic tasks (written also in Haskell)
were chosen. The first one is a PID controller, which is a
single-rate algorithm, therefore the method written in Sec-
tion 2 can even compile this code to generate the desired
VHDL. The second one is the synthesis filter bank (SFB)
part of the MP3 decoder algorithm. Since it contains sev-
eral loops, it can only be represented by multi-rate types of
dataflow graphs efficiently. The multi-rate extension of the
method detailed in Section 3 was used to compile this task.

A brief summary of the functional tests are shown in Table
1. Row 1 shows the characteristic numbers of the PID con-
troller, while Row 2 shows the same for the MP3 SFB. The
subtasks of the MP3 SFB can be seen in Row 3, 4 and 5
separately.

5. CONCLUSIONS
A compiler program is developed on base of the novel method
introduced in this paper. The method meets the require-
ments that was set before: 1) it generate the VHDL from

Program Num. of Num. of Num. of

operations links blocks

1 PID controller 29 36 0
2 MP3 SFB 93 133 6
3 MP3 ssum 19 25 1
4 MP3 uconv 32 45 0
5 MP3 usum 11 16 1

Table 1: Summary of the compiler tests

Haskell code automatically, 2) it reports in case of any com-
piler errors, 3) the structure of the compiler is modular (it
has a frontend and a backend part), thus the parts could
be used separately in other projects. 4) external pipeline
optimization stage can be included, since it has a dataflow
graph as intermediate representation. 5) the operation set
is able to be extended, because they are from an external
database separated from the compiler program itself.

The method, including its extended variant for multi-rate
tasks, was tested with practical applications, such as a PID
controller and an MP3 synthesis filter bank algorithm.
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ABSTRACT
This paper describes the system we developed for performing
arbitrary operations on data in parallel using a data-flow
graph [3].

Each operation is implemented in a dynamically loadable
module or using a domain-specific language, which was de-
signed specifically for this purpose. We also implemented
a compiler for this language. Our domain-specific language
is functional and strongly typed. We designed its type sys-
tem to be modular. Every data type is implemented in an
external dynamically loadable module, which the compiler
loads during its initialisation. Each module contains func-
tions for generating an intermediate representation for the
LLVM system, which optimises it and translates it into ma-
chine code.

As an example usage of our system, we developed operations
for image manipulation, compositing, and rendering of 3D
scenes. Such a set of operations is commonly used in the
film industry for the creation of special effects.

We also implemented a renderer based on the path tracing
algorithm, which creates an image from the description of
a 3D scene. This method is based on a physically-correct
simulation of light bouncing around the scene.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Parallel programming;
D.3.2 [Programming Languages]: Functional languages;
D.3.2 [Programming Languages]: Specialized applica-
tion languages; D.3.4 [Programming Languages]: Com-
pilers; E.1 [Data Structures]: Graphs; I.3.4 [Computer
Graphics]: Graphics packages; I.3.7 [Computer Graph-
ics]: Raytracing, Animation; I.4.0 [Image Processing and
Computer Vision]: Image processing software
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Keywords
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compositing, rendering, computer graphics
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1. INTRODUCTION
Computer generation and manipulation of images is becom-
ing more and more prevalent in the film industry [2]. From
compositing of complex rendered scenes with live actors to
simple colour grading, such tasks are accomplished with spe-
cialised software that allows its users to create a data-flow
graph of operations, which are applied to the footage.

Our goal was to create a generalised and more flexible soft-
ware package for performing arbitrary operations on any
data using a data-flow approach.

The core functionality of the system is the parallel execution
of data-flow graphs. Each node in a graph represents an
operation on data, which passes through its edges.

To ease creation of new graph operations, we developed a
domain-specific language. Operations can also be imple-
mented in any language that supports compiling code into
shared objects with a standard C ABI (these plugins are
then loaded at runtime). Our domain-specific language is
functional and strongly typed. An interesting feature is its
type system. Each type is implemented in an external shared
object (plugin), which enables users to add custom types and
parsers for constant values.

As a practical usage of this system, we also implemented a
variety of operations and types. A particularly interesting
operation is a 3D scene renderer, which employs the Monte
Carlo path tracing algorithm to generate physically-correct
images of 3D scenes [4, 5].

2. SYSTEM ARCHITECTURE
Figure 1 shows an overview of the system components.

User interface

Script
Graph executor Operation

modules

Compiler Type modules

Task scheduler I/O modules

Figure 1: System architecture.

matcos -13 Proceedings of the 2013 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 10-11 October 25



In the most common use case, the system accepts a script
written in our domain-specific language. This script de-
scribes the data-flow graph (nodes and connections) using
standard function calls (this could be achieved in any other
language if the system was converted into a library).

First, the system loads and initialises I/O and operation
modules. This is followed by initialisation of the compiler,
which also loads the type modules. Then the script is com-
piled into machine code in memory and executed. The script
forms the data-flow graph to be executed in parallel. The
graph is executed after script execution finishes.

The main advantage of having external modules for I/O,
operations, and types is greater flexibility, as the main pro-
gram doesn’t need to be rewritten or recompiled to support
new file formats, operations, and data types.

The subsequent sections of this paper contain more detailed
explanations of the various subsystems.

3. OUR DOMAIN-SPECIFIC LANGUAGE
The main purpose of the language we created is to make
developing new graph operations easier, especially for people
who aren’t professional programmers. Its secondary purpose
is to provide a language in which users can describe the
data-flow graph, however, this functionality could easily be
accomplished using an existing language.

Our language is functional, strongly typed and compiled into
machine code for greater performance.

Optimisations and machine code generation are provided by
the LLVM framework (http://www.llvm.org/). The com-
piler we developed compiles source code into LLVM inter-
mediate representation, on which we run various LLVM op-
timisation passes and finally generate native machine code
for the architecture of the machine the program is running
on. The code is compiled directly to memory, no temporary
files are created during compilation.

3.1 Type system
All types in the language are implemented as external shared
objects (plugins). Each plugin module implements functions
for generating code for operators (e.g. adding two real num-
bers, multiplying a matrix with a vector, etc.) and parsing
constants (optional). The code generation functions actually
generate LLVM intermediate representation instructions.

Apart from operators, each module can also generate code
for various library functions for that type (e.g. functions
for dot and cross product in the case of a 3D vector type).
One of the library functions for composite types (e.g. vectors
and matrices) is also the constructor for that type. The
constructor function allocates memory for the structure and
sets its members to the values passed to the constructor.

One of the advantages of generating code for operators and
functions (as opposed to simply implementing them and gen-
erating function calls instead) is that this enables further
optimisations.

Each type module can also define a parser hook for con-
stants. While looking for constants, the lexer gives full con-
trol to such hooks. This means that the syntax of constant
values can be completely arbitrary. One could even include
an interpreter for another programming language and use
that to generate a constant by running a program.

3.2 Grammar
The grammar for our language in BNF [1]:

〈identifierexpr〉 ::= 〈identifier〉 | 〈identifier〉 ‘(’ 〈expression〉* ‘)’

〈constexpr〉 ::= 〈const〉
〈parenexpr〉 ::= ‘(’ 〈expression〉 ‘)’

〈ifexpr〉 ::= ‘if’ 〈expression〉 ‘then’ 〈expression〉
‘else’ 〈expression〉

〈forexpr〉 ::= ‘for’ 〈type〉 〈identifier〉 ‘=’ 〈expression〉 ‘,’
〈expression〉 [‘,’ 〈expression〉] ‘do’ 〈expression〉

〈withexpr〉 ::= ‘with’ 〈type〉 〈identifier〉 [‘=’ 〈expression〉]
(‘,’ 〈type〉 〈identifier〉 [‘=’ 〈expression〉])* ‘do’
〈expression〉

〈primary〉 ::= 〈identifierexpr〉
| 〈constexpr〉
| 〈parenexpr〉
| 〈ifexpr〉
| 〈forexpr〉
| 〈withexpr〉

〈unary〉 ::= 〈primary〉 | 〈unop〉 〈unary〉
〈binoprhs〉 ::= (〈op〉 〈unary〉)*
〈expression〉 ::= 〈unary〉 〈binoprhs〉
〈prototype〉 ::= 〈type〉 〈identifier〉 ‘(’ [〈type〉 〈identifier〉 [‘,’

〈type〉 〈identifier〉]*] ‘)’
〈func definition〉 ::= ‘func’ 〈prototype〉 〈expression〉
〈extern definition〉 ::= ‘extern’ 〈prototype〉
〈program〉 ::= (〈func definition〉 | 〈extern definition〉)*

The symbol 〈identifier〉 represents the name of a variable
or function. It can contain alphanumeric characters and
underscores, but cannot start with a digit.

〈const〉 represents a constant value, which can be parsed by
any of the type modules. When encountering this symbol,
the lexer goes through all the defined hooks in type modules
until it finds one that accepts the constant.

〈type〉 represents a type keyword. Each type module defines
a unique keyword for its type.

Comments in the language begin with a # sign and continue
until the end of the line.

The precedence of operators is shown in table 1.

Operators Precedence
; 1 (binds weakest)
= 2
or 6
xor 7
and 8

==, <> 9
<, >, <=, >= 10

+, - 20

*, / 40 (binds strongest)

Table 1: Precedence of binary operators.

Currently, only two unary operators are implemented —
unary minus (-) and logical negation (not).
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3.3 Code examples
All constructs in our language are functional expressions and
can be combined in the same way as arithmetic expressions.
The language is not whitespace sensitive.

Let’s look at how we might calculate the n-th Fibonacci
number in our language:

func int fib(int n) if n < 3 then 1 else fib(n-1) + fib(n-2)

An iterative version using real numbers would look like this:

func real fibr(real n)
with real a = 1.0, real b = 1.0, real c do

(for real i = 3.0, i < n do
c = a + b;
a = b;
b = c);

b # this is the value that the function returns

Variables are declared with the keyword with and are valid
in the expression following the keyword do. The for loop is
enclosed in parentheses due to the priority of the ; operator.
This operator behaves similarly to , (comma) in C.

4. DATA-FLOW GRAPHS
Data-flow graphs consist of nodes, which represent opera-
tions, and edges, which facilitate the flow of data between
nodes. In our implementation, the graphs are directed and
acyclic, as this is powerful enough to represent all current
use cases and simplifies parallelisation.

Operation
in1

in2
in3

out1 out2

Figure 2: Node structure.

Each node can have input and output ports (see Figure 2).
An input port is merely a pointer to an output port of an-
other node. All input ports must be connected to something.
Output ports also contain the data or results of the opera-
tion of its node. Output ports can remain unconnected.

Nodes without any input ports are usually generators of con-
stants, while nodes without output ports usually save or dis-
play the results.

Each port has a data type associated with it. If the types
of an input and an output port don’t match, no connection
between them can be made.

5. GRAPH CREATION
Graphs can be created using our domain-specific language.
Every operation gets its own constructor, which returns a
node handle and automatically adds the newly created node

into the global data-flow graph. Nodes that output con-
stants have an additional argument in their constructor. In-
dividual nodes can be connected using the function
connect(node1, "outputName", node2, "inputName"),
which connects output port outputName on node1 to input
port inputName on node2.

To get a better idea of how this works, let’s take a look at a
real-world example:

func int main()
with node s1, node s2, node s3, node s4,

node s5, node c1, node r1, node r2,
node li1, node li2, node ck1,
node cb1, node si1

do (
# Create constant generators
s1 = String("bg.png");
s2 = String("fg.png");
c1 = Color(color(0.0, 1.0, 0.0, 1.0));
r1 = Real(0.05);
r2 = Real(0.10);
s3 = String("over");
s4 = String("f");
s5 = String("out.png");

# Create operations
li1 = LoadImage();
li2 = LoadImage();
ck1 = ChromaKey();
cb1 = Combine();
si1 = SaveImage();

# Connect ports
connect(s1, "const", li1, "fileName");
connect(s2, "const", li2, "fileName");
connect(c1, "const", ck1, "keyColor");
connect(r1, "const", ck1, "tolNear");
connect(r2, "const", ck1, "tolFar");
connect(li2, "imageOut", ck1, "imageIn");
connect(s3, "const", cb1, "mode");
connect(s4, "const", cb1, "clipTo");
connect(ck1, "imageOut", cb1, "fgImage");
connect(li1, "imageOut", cb1, "bgImage");
connect(cb1, "imageOut", si1, "imageIn");
connect(s5, "const", si1, "fileName");

);
0

This script generates the graph shown in Figure 3.

String:
bg.png

String:
fg.png

LoadImage LoadImage

Color:
rgb(0,1,0)

Real:
0.05

Real:
0.10

ChromaKey String:
over

String:
f

Combine String:
out.png

SaveImage

const

fileName

const

fileName

const

fileName

const

keyColor

const

tolNear

const

tolFar

const

mode

const

clipTo

imageOut

imageIn

imageOut

fgImage

imageOut

bgImage
imageOut

imageIn

Figure 3: Graph example (image compositing).

The generated graph loads two images (bg.png and fg.png),
performs chroma keying on the foreground image, overlays
the result over the background image, and saves the final
composite into out.png.
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6. GRAPH EXECUTION
During execution, each operation gets a parameter, which
tells it for which moment in time (t ∈ N0) it should per-
form that operation. This is useful in graphs that generate
animations, in which case t represents the frame of the ani-
mation.

The currently implemented ways of executing a data-flow
graph are:

• single execution — executes the graph only once for
a given t
• multiple execution — executes the graph for many

given t’s
• continuous execution — executes the graph until

interrupted by the user (t starts at 0 and rises mono-
tonically).

To execute the graph, we convert operations within it into
tasks for our batch job scheduler and set their priorities ac-
cording to the dependencies from the graph.

4

3
2
1
0

Figure 4: Decomposing the graph into levels.

As shown in Figure 4, we can decompose the graph into
levels. Operations which share the same level are mutually
independent and can be executed in parallel.

The parallel schedule is generated using a greedy approach,
starting at the nodes with no outputs and working upward
to satisfy dependencies.

The batch job scheduler is currently custom-made. It spawns
as many threads as there are processor cores in the system.
These threads then obtain work from a global priority queue,
which contains the tasks. Threads with higher priority have
to finish before those with a lower one can be run.

7. OPERATIONS
Implemented operations, sorted by area of usage:

• compositing [2] — CorrectGamma, Combine, Pre-
multiply, Unpremultiply, ToneMap, ChromaKey, Dif-
fKey, Resize, Crop, AffineTransform, Convolve2D
• rendering [4, 5] — Sphere, LoadTriangleMesh, Cam-

era, LoadSpectrum, BRDFMaterial, LambertianBRDF,
AshikhminBRDF, ApplyEmission, ApplyNormalMap,
SceneGraphNode, AddChild, PathTrace
• general — LoadImage, SaveImage, LoadFrame, Save-

Frame

Figure 5 shows an example image generated with our system.
Rendering and compositing of elements in the picture was
made entirely using our system.

Figure 5: George, I think we’re lost.

8. CONCLUSION
The main goal was to create a generalised and flexible soft-
ware package for performing arbitrary operations on any
data using a data-flow approach. To this end we developed
a system for parallel execution of data-flow graphs with its
own domain-specific language, created to facilitate the im-
plementation of graph operations. As an example of the sys-
tem’s flexibility, we implemented various compositing, ren-
dering, and general image processing operations [3].

Although the system is already in a usable state, many fu-
ture improvements could be made. Implementing a graph-
ical user interface for creating graphs would be most ben-
eficial, as it would make the system more accessible and
easier to use. The scheduler could be improved to handle
distributed scheduling.

The system gets more useful as more operations are added.
Possible areas for future development of operations include:
digital signal processing, computer vision, data mining, and
hardware control. Utilising operations from these areas, the
system could collect data from sensors, analyse it, and visu-
alise the results. It could also be used to control a robot or
industrial machinery.
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ABSTRACT
In this paper, we describe an algorithmic framework for the
vehicle rescheduling problem. This framework is based on
problems arising in the operative planning of real-world pub-
lic transportation companies.

Categories and Subject Descriptors
H.4 [[]: Information systems applications]; H.4.2 [[]: Types
of Systems]: Decision support (e.g., MIS), Logistics

General Terms
Vehicle scheduling, Disruption management, Public trans-
port

1. INTRODUCTION
Based on the available transportation data, the vehicle- and
driver schedules of a transportation company are created in
advance. A unique schedule is created for each day (or day-
type) of the planning period in such a process. A daily sched-
ule of a company is made up of vehicle and driver duties. A
duty is considered as a series of tasks, which the correspond-
ing vehicle and driver has to complete in the given order.
The most important tasks of these duties are the timetabled
trips, which come from the timetable of the company and
have to be executed.

However, there are several difficulties that can arise while
executing such a schedule in real-life: a problem with the
vehicle itself, sickness of the driver, or other such things can
make the pre-planned schedule infeasible. These unforeseen
difficulties are called disruptions. If a disruption arises, a
new feasible schedule has to be created, usually by resche-
duling the old one.

Disruptions have to be managed almost immediately, which
is usually the task of a company operator. Companies usu-
ally have a backup vehicle with which they address more

∗supervisor

complicated disruptions, but this solution is usually really
expensive. Operators might not be able to solve compli-
cated disruptions in short time, but a decision support sys-
tem could provide them with helpful suggestions in such a
case.

The goal of our paper is to introduce a solution framework
for the rescheduling problem in public transportation, which
could be used in aiding company operators responsible for
managing disruptions. An important requirement for this
framework is to guide the solution process regardless of the
applied solution method. As the problem has to be solved
in almost real time, one of the main requirements for such
a system is to provide suggestions quickly. Optimization
systems are already present for long-term planning [2, 11,
12], but these are all built around given solution methods.
However, the only paper to our knowledge that deals with a
system for bus rescheduling is the one by Li et al. [8].

Although there are published mathematical models for the
problem [6, 10], these cannot be solved in short enough time.
This leads to the design of efficient heuristic methods [6, 9],
which are able to provide quick solutions. The system we
present in this paper is designed to work with any kind of
solution method, and gives results for the problem based on
needs of the operators, which they can control through dif-
ferent parameters. The heuristic methods we use to demon-
strate the system were published in [6].

The outline of our paper is the following: first, we give a
quick overview of the rescheduling problem and disruption
management. We present the basic regulations, and give
a list of these that can be regarded in a flexible manner
through parameters and penalizing. Based on these design
thoughts, we introduce the suggested framework itself. Fi-
nally, we give some ideas of solution methods that we pro-
pose for the framework.

2. TRANSPORTATION SCHEDULING AND
DISRUPTION MANAGEMENT

The daily schedule of a transportation company consists of
several duties. Every duty is executed by a driver, and also
has a corresponding vehicle. Each duty is a series of tasks
that have to be carried out in the given order. The most
common tasks are the ones corresponding to the trips of the
timetable, and the so-called deadhead trips, which are re-
sponsible for moving the empty vehicle from one location to
another. There can also be several different vehicle specific
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tasks (eg. parking, refueling) and driver specific tasks (eg.
breaks, administration).

2.1 Disruption management
When a disruption happens, usually one of the vehicles in
service becomes unavailable for a period of time. This leads
to the pre-planned schedule becoming infeasible, as one or
more of the tasks are not executed by a vehicle anymore.
These trips are addressed from now on as disrupted trips.
A vehicle schedule becomes infeasible if it contains such
trips. Companies usually have a backup vehicle and driver
ready, which are dedicated to such situation, but this solu-
tion might not be the best one.

Moreover, most real-life cases have a so-called multiple depot
problem. There are several different depot locations and/or
vehicle types, and every trip can only be serviced by vehicles
belonging to a set of pre-determined depots. Because of
this fact, our problem is NP-hard in the case of 2 or more
depots. The vehicle rescheduling problem can be reduced
to the vehicle scheduling problem, which was proven to be
NP-hard by Bertossi et al. [1]. However, the problem itself
should be solved as quickly as possible, and order should be
restored with a new feasible solution.

2.2 Related work
To our knowledge, the literature regarding bus disruption
management is scarce. Disruption management connected
to different transportation fields has been researched for a
longer period of time.

The earliest papers regarding disruption management were
published about the airline industry. An overview paper by
Clausen et al. can be read in [4, 3]. A bit younger field
is disruption management is railway transportation. Some
results regarding this area can be read in [7].

Both airline and railway disruption management differ from
bus disruption management in their underlying structure.
While buses are quite easy to move around with the help
of deadhead trips between different geographical locations,
the deadheading of airplanes is mainly prohibited by the
high arising cost, and railway deadheading is subject to the
underlying limited rail capacities.

As we have mentioned, the problem of bus rescheduling as
defined above was only considered by Li et al. In their pa-
pers, they studied the single depot BRP. They give a quasi-
assignment model and an auction algorithm for the prob-
lem in [9], and a network flow model is described in [10]
which is solved with the help of Lagrangian relaxation. In
[8], they also describe a possible decision-support system for
this problem, which is illustrated with the help of a small
real-world instance.

2.3 Real-life criteria
In a real-life application, there are several rules and con-
straints that make the problem more complicated. There
are regulations that cannot be violated, while the violation of
others should be penalized. As we mentioned earlier, we can
define daily schedules of both vehicles and drivers, thus we
classify our rules into two groups. In this subsection, we will

give a list of the most important rules in both groups. Note,
that these are only the most common regulations. Other
ones might arise depending on a specific company or coun-
try.

• Vehicle regulations

– Vehicle depot and trip compatibility : As we men-
tioned earlier, vehicles can be classified into de-
pots. Trips can only be serviced by a fixed set of
depots, and this should be respected when creat-
ing a new schedule to manage the disruption.

– Vehicle type and trip characteristics: Similarly to
depot compatibility, some trips can only be exe-
cuted by vehicles of a certain type. For example,
trips that are carried out between different cities,
or have a long distance, must have a bus with
special equipment (eg. air conditioning).

• Driver regulations

– Maximum driving time: Each driver has a maxi-
mum daily driving time, which they can not ex-
ceed.

– Driver breaks: After given time periods, drivers
have to be assigned breaks. Moreover, these breaks
have to be assigned at specific geographical loca-
tions.

– Maximum working time: Similarly to driving time,
the daily working time of drivers is also maxi-
mized. This does not equal driving time, as driver
duties have other events as well, which do not re-
quire a vehicle (eg. administration).

Besides these regulations, some structural modifications should
also be considered in the schedule. For an illustrative exam-
ple, refer to Figure 1.

Figure 1: An illustrative example

On the above figure, a disrupted daily schedule can be seen,
with a disruption represented by a vertical line. There is
one disrupted trip J0. Depending on some circumstances,
we can give several solutions for the problem. Here are a
few examples:
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• If trip J0 is compatible with duty F1, and there is
enough time to insert it to the available gap (together
with any necessary deadhead trips), then we can solve
the problem.

• If we want to insert J0 to duty F2, we have to remove
trip J2. There are several different places we can insert
this newly removed trip. It might fit into the gaps in
duties F1 or F5 (if compatible, and there is enough
time for deadheads). We might also be able to insert
them to duties F3 or F4. However this would mean we
have to remove trip J3,2 or J4 respectively, and finding
a new duty for them.

• Following the above logic, there are several different
scenarios that utlizie removing trip from a duty, and
inserting it to another one.

• We might delay trip J3,2 in duty F4. This can give us
a big enough gap to insert our trip J0 (if it is allowed
by compatibility and deadheads).

As it can be seen from the above examples, there are some
other constraints as well that are connected to the original
duties or tasks (eg. modifying starting time, or removing a
trip from its original duty).

A solution method for this problem need to know the ex-
tent to which it can violate the constraints we introduced
above, and it also needs to know the hardness of the con-
straint. This information can be given easily with the use of
parameters.

2.4 Parameters
In this subsection, we introduce parameters for the differ-
ent rules and constraints given in the previous subsections.
These parameters need to be considered by any algorithm
solving the bus rescheduling problem:

• A binary parameter that allows the violation of depot-
compatibilities. A penalty parameter for each viola-
tion of depot-compatibility is also needed.

• A binary parameter that allows the violation of ve-
hicle type correspondence. A penalty parameter also
has to be introduced for each violation of vehicle type
correspondence.

• A binary parameter that allows the introduction of
lateness. A penalty parameter also has to be intro-
duced per 1 unit (minute) of lateness.

• A binary parameter that allows the movement of trips
between feasible schedules. A penalty parameter is
also needed that gives the cost of each such move.

• An integer parameter that limits the maximum amount
of lateness which can introduced by the algorithms to
the schedule.

• An integer parameter that limits the maximum amount
of lateness an algorithm can introduce to a single event.

• An integer parameter that limits the maximum amount
of lateness an algorithm can introduce to one duty.

• An integer parameter that gives the maximum number
of feasible schedules which can be modified.

• A parameter that limits the maximum length of the
newly introduced deadhead trips.

• A parameter, which gives the latest point in time, by
the end of which the algorithms should not modify any
more feasible schedules.

• A parameter on the number of suggestions (feasible
solutions).

• A parameter on the maximum running time.

As it can be seen in the list of proposed parameters, there
are none that correspond driver rules. Driver regulations
are very strict, and most of them are defined by the EU,
and cannot be violated by any means. Depot compatibility
and vehicle type correspondence might also be strict, but we
decided to let the operator of the system decide about their
violation.

3. THE SOLUTION FRAMEWORK
In the previous sections, we presented our basic ideas behind
the methodology for the problem. We described a framework
that does not depend on the solution algorithm it executes,
and can be controlled through a list of different parameters.
In Figure 2, we give a layout of the different parts of the
system.

Figure 2: The structure of the framework

The input for the system consists of two parts. One part
is the list of parameteres, that we described in the pre-
vious section. The other part is the problem data itself,
containing the problem specific data tables. The type and
structure of these tables of course can vary between differ-
ent implementations of such a system, but it is important
that it contains the disrupted schedule and the disrupted
trips. For the remainder of the paper, we will refer to
the pair of {disruptedschedule, setofdisruptedtrips} as a
configuration.

The input determines the starting configuration of our prob-
lem, which is a schedule that contains feasible duties, and a
set which contains the disrupted trips, that are not executed
currently by any vehicle. A configuration is supposed to be
feasible, if its set of trips is empty, and all the duties in its
schedule are feasible and do not violate any regulations or
parameters.

Once all the input is read, it is then transferred to the main
module of the system, which we call the Rescheduling Black
Box (RBB). This is the part that carries out the solution
process, and consists of two parts:
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• The Solver Library (SL) manages the different solution
methods that are built into the system. The system
can have any number of implemented solution meth-
ods, and the desired method can be invoked by pa-
rameter setup. If there is a possibility to parallelize
solution processes, multiple methods can also be exe-
cuted at once.

• The output of a solution method is sent to the Solu-
tion Collector (SC). This sub-module is responsible for
managing feasible solutions. If more solution methods
are running in parallel, all of them send their results
to the SC. The SC then filters any duplicate solutions,
and also gives an ordering of the remaining ones based
their cost.

Once all solution algorithms finish their execution, or the de-
sired maximum runtime is reached, the SC returns a number
of feasible solutions. The desired number can be given by
the operator as an input (number of suggestions), and their
order is determined mainly by their cost, but they can also
be filtered considering the different parameters (eg. ask for
ones with no lateness, if possible). The operator receives
this data, and can use these to decide on how to solve the
arising problem.

4. A REAL LIFE APPLICATION
In this section, we briefly describe a real-life application of
the above system. As we mentioned earlier, solution for the
rescheduling problem has to be adequatly quick, as the order
in transportation has to be restored as soon as possible.
Because of this, the implemented heuristic methods must
have a running time of at most a couple of seconds to be
acceptable.

Also, because of the flexibility of the SC module, it is useful
to provide solution methods which find multiple feasible so-
lutions during their runtime. This gives the operator more
suggestion options to choose from. A simple approach that
we implemented in our system is a naive search, which ba-
sically finds all the possible trivial insertions in the starting
configuration (if any), and inserts them to the solution col-
lector. If there is any trivial insertion, it is highly likely that
it will be the cheapest solution with regards to any of the
parameters.

In one of our previous papers, we formulated a mathematical
model for the bus rescheduling problem [6]. The size of the
problem is big, and it cannot be solved efficiently even for
smaller random instances. However, we also proposed two
solution heuristics in the same paper. These methods have
also been implemented to the system.

The first method is a recursive search, which uses the ini-
tial configuration as an input, and inserts a disrupted trip
into one of the schedules in each step. If the disrupted trip
cannot be inserted trivially, then other trips are moved from
the schedule to the disrupted set. To avoid exponential ex-
plosion, we gave a depth limit to the recursive calls, and
also have a function that cuts certain branches of the search
tree. The recursive search finds a feasible solution, if the
disrupted set is empty.

The second method is a local search heuristic (where a tabu
list can also be applied effectively). This method creates
a (probably infeasible) pseudo-schedule from the disrupted
trips, without any regards to the regulations. In each it-
eration step of the search, either a move or a swap opera-
tion is executed. A trip is either moved from a schedule to
another, or is swapped with events from another schedule.
One important rule is that trips cannot be moved onto the
pseudo-schedule. The local search finds a feasible solution,
if the pseudo-schedule is empty.

Test results of the framework in real life have been promis-
ing. All instances have a short running time (they all finish
under 1 minute even for bigger instances). It can also be
seen, that these methods will find multiple feasible solution
while exploring there solution space. Because of the SC in
the system, the solutions can all be saved, and the ones that
best suit the parameters of the operator can be chosen at
the end.

Besides the real instances, we also tested our system on ran-
domly generated data. In Table 1 and Table 2, we present
the results of the above methods. The tables give the in-
stance name, the number of original trips in the schedule,
the number of the disrupted trips, and the running time
of the recursive and local search methods on seconds. All
instances in Table 1 are generated using the method in [5].

Table 1: Solution on random instances from [6].
Instance Depots Trips Disrupted

trips
Rec.
(s)

Loc.
(s)

random1 2 12 1 0.02 0.001
random2 4 100 1 0.05 0.004
random3 4 500 1 0.08 0.01
random4 4 800 1 0.08 0.05

We also present two real-life test results from the city of
Szeged, Hungary. The smaller instance is only for a district
of the city on a workday, while the bigger instance is that of
a Saturday.

Table 2: Solution on real-life instances.

Instance Depots Trips Disrupted
trips

Rec.
(s)

Loc.
(s)

szeged small 4 206 2 0.399 0.548
szeged sat 4 1983 1 0.037 0.059

As it can be seen from the above tables, all test results have
a good running time for both of our heuristics. The methods
also returned several suggestions for the test cases.

5. CONCLUSIONS AND FUTURE WORK
The long-term plans of public transportation companies are
disrupted on a daily basis. These disruptions have to be
addressed as soon as possible. In this paper, we introduced
a decision support framework for the rescheduling problem
in public bus transportation.

We analyzed both vehicle and driver regulations for the daily
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schedules, and determined the parameters that have to be
considered during the rescheduling process. The framework
we described is independent of the solution method, and is
also able to run different solution methods in parallel. It
can also store and return multiple solutions, which gives the
flexibility to the company operator to choose according to
his or her needs.
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ABSTRACT
This paper describes our application of a novel method in
the field of traffic sign recognition - the D2 shape function.
We first give an overview of the advances and research in
this field. We then describe the D2 shape function that was
originally used to classify 3D models of various objects -
because of its robustness we propose its use in the field of
traffic sign recognition. We describe how the program that
was developed using this method works and present the re-
sults on a testing set of self-acquired speed limit traffic signs,
evaluate its performance and compare it to the performance
of statistical moments.

General Terms
Algorithms

Keywords
Symbol recognition, traffic signs, D2 shape function

1. INTRODUCTION
While driving a vehicle, the driver has to be constantly aware
of a number of factors, one of which are traffic signs. These
signs can have specific properties, such as color and shape,
which allow their recognition with the use of Computer Vi-
sion. So it is no surprise that this is one of the important
steps towards the automatization of driving vehicles. Once
the traffic sign is detected, we would usually like to know
what kind of symbol (if any) the traffic sign contains. Recog-
nition is useful for many purposes: the driver could forget
what the last speed limit he drove by was, an inexperienced
driver could see a traffic sign for the first time and he would
like to know its meaning etc. It is therefore apparent that
traffic sign recognition has a real-world use.

There have been many different methods proposed in the
field of traffic sign detection and recognition in the last two
decades. Let us mention some implementations that at-
tracted the most attention from the community. In 1996,

Piccioli presented a robust method for traffic sign detec-
tion and recognition [10]. One year later, de la Escalera
developed an algorithm that focuses on the recognition of
traffic signs - the algorithm uses neural networks for the
classification of traffic signs [4]. De la Escalera built on
that work in his 2003 article where he used a genetic algo-
rithm for the detection step, which allowed further invari-
ance [3]. In 2000, Pacĺık proposed his own algorithm for traf-
fic sign classification using the Laplace probability method
and an Expectation-Maximization algorithm to maximize
the likelihood function [9]. In 2004, Fang developed a traf-
fic sign detection and recognition system that is based on
a computational model of human visual recognition pro-
cessing [5]. Two years later, Gao improved upon the hu-
man vision model recognition using separate models for ex-
tracting color and shape information, respectively [6]. In
2007, Maldonado-Bascón described a traffic sign detection
and recognition system that is based on support vector ma-
chines which is invariant even to partial occlusions [7]. In the
same year, Cyganek also used support vector machines in his
system for traffic sign detection, whereas the recognition is
performed using neural networks [2]. Finally, in 2009, Baró
presented a system that performs traffic sign detection with
the boosted detectors cascade and traffic sign recognition
with a forest of optimal tree structures that are embedded
in the ECOC (Error-Correcting Output Code) matrix [1],
whereas in the next year, Ruta added a tracking procedure
between the steps of traffic sign detection and recognition -
this tracker predicts the position and scale of the sign can-
didate to reduce computation. That system uses Color Dis-
tance Transform for the classification of traffic signs [11].

In this paper we present an alternative method for traf-
fic sign recognition, based on the D2 shape function that
promises high robustness required for such applications. The
method is presented in the next Section and its practical ap-
plication in Section 3.

2. METHOD DESCRIPTION
For the recognition of traffic sign symbols we use the D2
shape function - a method first described by Osada in his
2001 article [8] - it is therefore a fairly new Computer Vision
method. The function samples random pairs of points and
creates a histogram of distances between these point-pairs.
Figure 1 shows how the D2 shape function creates the dis-
tance histogram between pairs of points on a cup [12].

The idea behind the function is that with a large enough
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Figure 1: The distances between randomly gener-
ated pairs of points are converted to a distance his-
togram with the appropriate use of normalization.
The histogram represents the D2 shape function for
the cup and therefore defines the object descrip-
tion.1

number of sampled point-pairs on the object we get such a
distribution of the distance histogram that is specific for the
object, which means that we are able to recognize that ob-
ject. In our case we compare the distance histogram with the
histograms created from each of the images in the learning
set. The procedure itself is therefore simple - we randomly
generate a large number of point-pairs on the surface of the
object and compute distances between them. It is worth
noting that aside from the D2 shape function, Osada intro-
duced other randomized shape functions [8]:

• A3: computing the angle between three randomly gen-
erated points on the surface of the 3D model of the
object,

• D1: computing the distance between a fixed point and
a randomly generated point on the surface of the ob-
ject,

• D3: computing the square root of the surface of the
triangle, defined by three randomly generated points
on the surface of the object,

• D4: computing the cube root of the volume of the
tetrahedron, defined by four randomly generated points
on the surface of the object.

Out of all these functions, the D2 shape function turned out
to be the most robust [12], which is why we decided to use
it for our application in traffic sign symbol recognition.

3. PROGRAM DESCRIPTION
The program for traffic sign symbol recognition was devel-
oped in the Matlab programming language and in this Sec-
tion we explain how it works. Here we do not focus on traffic
sign detection and assume that traffic signs are already seg-
mented and symbols cropped out of them. The detection
and cropping is performed within the program for traffic
sign detection which was previously developed and is not a
part of the traffic sign recognition program.

1The image is taken from Wohlkinger’s paper [12].

Figure 2: On the left we have the original segmented
image. We then perform two morphological opera-
tions - first erosion (middle image) and then dila-
tion (right image). The result is the symbol with
the original size but without the noise.

3.1 Preliminaries
First we read the image, change its color space from RGB to
HSV and perform the segmentation of the image by using the
mean of all the brightness values - if a pixel has a brightness
value smaller than the mean brightness of the image, we set
the corresponding pixel of the binary image to 1, otherwise
to 0. Once the image is successfully segmented, we have to
make sure that aside from the traffic sign symbol we did
not detect any anomalies that are not part of the symbol.
These errors can occur due to different light reflections, dirt
or dust on the camera lens as well as on the traffic sign etc.

We use two morphological operations for noise reduction -
erosion and dilation. With erosion, we shrink all the areas in
the image and as a result the noise is removed, but we also
get smaller areas of the detected traffic sign symbol. Because
we only want to delete the noise and preserve the symbol
itself, we then use the morphological operation of dilation
which expands the symbol to its primary size. Figure 2
shows the effect of these operations.

In this paper we focus on speed limit traffic signs, where
the symbol can be divided into numerals that are recog-
nized separately, which is why the next step is searching
for connected components. This search is important for the
recognition of numerical symbols, because with it, we can
divide the number into numerals and since the numerals do
not overlap, we can safely assume that one connected com-
ponent represents one numeral. The reasoning behind this
search is that we can achieve greater recognition accuracy
by recognizing each of the numerals than by recognizing the
whole number at once because we do not have to model ad-
ditional dependencies between the numerals which can be
different from traffic sign to traffic sign - the most obvious
of these is the distance between the numerals in the num-
ber. In the case of non-numerical symbols, the components
would be recognized separately as well.

3.2 Computing the D2 shape function
At the beginning of the D2 shape function computation we
visit each of the connected components (except for the first
one which represents the background). The first step is the
generation of random x and y coordinates between values
1 and the image height for the x coordinate and between
1 and the image width for the y coordinate - the number
of generated coordinates is defined by an input parameter.
Then we go through the array of generated coordinates and
for each pair of coordinates we check if the pixel with that
coordinates lies on the numeral that is currently being rec-
ognized. If it does, we copy this pair into a new coordinate
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Figure 3: Learning set of images with numerals in
the standard font of Slovenian traffic signs. Each
numeral is saved in its own image.

array where we keep only the pixels that lie on the numeral.

After that there is the main part of the D2 shape func-
tion computation. We first check if we managed to find a
sufficient number of coordinate pairs from pixels positioned
on the numeral - if we did, we continue with the computa-
tion and if we did not, we abort the computation for the
recognition of the current region and continue with the next
one. The reason for this check is further insurance from the
presence of noise - if we did not find a sufficient number
of coordinate pairs, then we can conclude that the detected
area is too small and consider it being noise.

Then we visit the first half of the array with randomly gen-
erated x and y coordinates and in each step we compute the
Euclidean distance between a pixel in the first half of the
array and a corresponding pixel in the second half. When
we are done with the computation, we sort the distances by
size and normalize them so they all have values from 0 to
1 - we do that by dividing every distance with the maxi-
mum distance obtained in the analyzed region. The latter is
necessary for the comparison of images with different sizes.
As a result we therefore return a matrix of these normalized
and sorted distances for each of the detected numerals.

3.3 Learning and comparing the input image
with the learning set

Apart from the main function of the traffic sign symbol
recognition program, we use two more auxiliary functions
to properly recognize the traffic sign - one for teaching the
program on the images from the learning set and one for
the recognition of the input image using the images from
the learning set. Figure 3 shows the learning data set. It
is important to note that the font for Slovenian traffic signs
is standardized which means that one sample per numeral
is sufficient. We will describe the learning process and the
comparison in this Section.

For the learning, we go through the 10 images from the learn-
ing set and for each of them we run the symbol recognition
code as many times as is defined by the input parameter
and we then average the results. For the comparison of the
input image with the learning set, we repeat the recogni-
tion multiple times so that we increase the probability of
an accurate recognition - we then return the result that was
recognized in most of the repetitions. It should be noted
that we convert distances into histograms, which is needed
because a direct comparison of distances would provide in-
accurate results as the distance values are too specific. We
compare each bin of the distance histogram of the current
numeral on the input image with the histogram of the cur-
rent image from the learning set and compute the Euclidean

Figure 4: Testing set of speed limit traffic signs that
was used for the definition of the parameters and
testing the performance of the traffic sign symbol
recognition program.

distances between pairs of bins at the same positions. We
use the 1-nearest neighbor method to classify the numerals
in the image because we only have one sample per numeral
and one numeral represents one class.

4. RESULTS
For the definition of the parameters and testing the perfor-
mance of the traffic sign symbol recognition program, we
acquired a testing set of 46 speed limit traffic signs. Figure
4 shows this testing set of traffic signs. It contains images of
traffic signs taken under different conditions - different light-
ing, orientation of the sign, size of the sign, quality of the
image etc. This difference between the conditions of each
image was achieved on purpose - to prove the robustness of
the program.

The procedure of defining the parameters was performed
with the help of auxiliary functions and the final values of
the parameters are saved in a configuration file. They are
as follow:

• number of randomly generated pixels for the D2 shape
function computation: 100000,

• percentage of randomly generated pixels that have to
lie on the symbol: 0.1 (10%),

• number of learning iterations for the images from the
learning set: 5,

• number of iterations of comparison between the input
image and images from the learning set: 10,

• number of bins in distance histograms: 20.

Once the parameters were defined, we ran the traffic sign
symbol recognition program on the testing set of traffic signs
to test the performance of the program. The final result is
42 of 46 accurately recognized speed limit traffic signs, which
is approximately a 91.3% accuracy.

5. COMPARISON WITH STATISTICAL
MOMENTS

When developing the program for traffic sign recognition,
we first tried using statistical moments as the recognition
method. In particular, we used a combination of normalized
central moments, which are invariant to the position as well
as to the size of the object, and Hu moments, which are fur-
ther invariant to rotation. The framework of the prototype
is very similar to the program described in Section 3, and
the learning and testing sets of traffic sign images are the
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same, so the only difference is in the method that was used
for each prototype. We can therefore compare the results of
the two traffic sign recognition programs.

After testing the statistical moments prototype, it quickly
became obvious that it would not be a good fit for traffic
sign recognition - we tested the program several times, every
time with different maximum orders of statistical moments
(from 5 all the way up to 40). The problem was that the
calculated values of statistical moments did not yield any
discernible patterns, which is the basis for object recogni-
tion. The prototype thus behaved unpredictably and often
recognized a false symbol. After using the same program
framework to develop a prototype using the D2 shape func-
tion and getting promising results, we concluded that the
fault was not in the way we developed the program or in
the set of acquired images, but in the method used. We
therefore abandoned statistical moments and moved on to
search for more suitable methods, until we found the D2
shape function.

While statistical moments have a wide range of use, we found
the D2 shape function to be much more suitable for traffic
sign recognition.

6. CONCLUSION
Shape functions up until now were not used in traffic sign
recognition - we presented a prototype using the D2 shape
function that recognizes traffic signs. It should be noted
that while the testing set, presented in Section 4, is a col-
lection of traffic sign images that are as varied as possible,
therefore maximizing the robustness of the traffic sign recog-
nition program, the set is still quite small - only 46 images.
The problem is that there is no publicly available deposi-
tory or collection of Slovenian traffic sign images and the
set therefore had to be acquired by hand, which, due to the
fact that we want to capture as many different traffic signs
as possible, is very time-consuming. That is why we focused
only on speed limit traffic signs, but we could easily expand
the scope to all traffic signs as the D2 shape function is not
limited to any number of components. To add a new type
of traffic sign, all we would need to do is to add the corre-
sponding traffic sign symbol to the learning set.

As described in Section 4, the final performance of the pro-
gram is 91.3% accurately recognized speed limit traffic signs,
which is an encouraging result and an initiative for further
use of the D2 shape function in the field of traffic sign recog-
nition and possibly other fields too. It is a robust procedure
which also works on very small and low quality images - the
smallest image used for testing had a resolution of 38 × 31
pixels and the program correctly recognized it. It is worth
noting that this method for recognition is much simpler than
traditional methods, in particular comparing to solutions,
mentioned in the Introduction, where methods like neural
networks and support vector machines were used. In terms
of performance we can not directly compare it to these solu-
tions since we do not have a testing set that would be large
enough, but we did get a sense that it is a robust method.

As a final note, the D2 shape function performs much bet-
ter than statistical moments for traffic sign recognition, as
is described in Section 5. Considering our results we can

conclude that the D2 shape function seems well suited for
this field of Computer Vision.
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ABSTRACT
This work is devoted to the searh of the efficient algorithms
for the simulation of filtration gas combustion processes. In
particular, a two-level parallel algorithm based on the ex-
plicit finite difference scheme using an adaptive mesh is con-
structed. Two ways of parallelization, namely, the direct
usage of OpenMP directives and special distribution of data
across threads are carried out. It is numerically shown, that
the last one provides significant performance advantage.
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1. INTRODUCTION
The phenomena of filtration gas combustion (FGC) had
been discovered in the 70s of the previous century and it
has still not been studied fully. Meanwhile the knowledge of
the properties of FGC processes is essential in solving many
problems of chemical technology, ecology, fire safety, etc.

In particular low-speed mode of filtration gas combustion
process, which is under consideration, is the physical basis
for construction modern industrial flame arrester, environ-
mentally friendly burners and other. Therefore numerical
simulation of FGC is the problem of current interest that
has important practical application.
From the physical point of view the process presents the
propagation of the region of gaseous exothermic reaction in
chemically inert porous medium, as gaseous reactants are
being supplied into the region of chemical transformation
[2]. It is implemented as follows. Let there be a tube filled
with a porous material, measuring about 10 cm. From one
edge of it a combustible gas mixture is supplied at a rate of
v. Then the mixture is ignited, resulting in a flat combustion
front, which can either be stationary or move in any direc-
tion (at a rate of u), depending on the model parameters
(see Figure 1). It occurs due to the heat recuperation. In
the heating zone fresh gas mixture gets hot and the chemical
process occurs in the reaction zone that causes heat release.
In the relaxation zone high-temperature products of com-
bustion exchange heat with the porous solid and then heat
transfers through it back to the heating zone by means of
thermal conduction.

Figure 1: The scheme of the physical model of FGC

The main difficulty in the simulation of this process is its
very different scales; it is especially hard to deal with the
kinetic-diffusion distinction.
In this study the simplest case is considered, when the model
is one-dimensional, and still it takes hours to simulate the
process that lasts less than a half of a minute. It doesn’t
seem possible to proceed to multidimensional case under
such conditions. At the present time great expectations for
having the opportunity to deal with such tasks are related
to the appearance of multi-processor machines and the de-
velopment of parallel methods.
This work is an expansion of [3] and devoted to the analysis
of the possibilities to improve the performance of some com-
putational models of FGC in low-speed mode. In particular
the introduction of adaptive nested grid [5] and paralleliza-
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tion on shared memory [1] are discussed. All the constructed
algorithms provide us with the solutions of the problem that
coincide with the experimental data. The special method
of parallelization on the machines with shared memory was
developed and applied to the constructed algorithms, that
reduces the computational time greatly not only compared
to the sequential implementation, but to the classical way
of parallelization with the direct usage of OpenMP pragmas
as well.

2. MATHEMATICAL BASIS
2.1 Mathematical model
The simplest one-dimensional FGC model in the enthalpy
formulation includes three equations:

∂T

∂t
= as

∂2T

∂x2
+ αs(H − T −

Q

cg
η), (1)
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−W (η,H). (3)

Here ai = λi/ciρi is the coefficient of thermal diffusivity
of the i-th phase, ci, ρi, λi are respectively, specific heat
at constant pressure, density and thermal conductivity of
i-th phase (i = s for porous solid, i = g for gas), αs =

α
(1−m)csρs

, αg = α
mcgρg

, m - porosity, α - interphase heat

transfer rate, v - flow rate of the combustible mixture, T ≡

Ts, cgH = cgTg + Qη is full gas enthalpy, where Ti is the
temperature of the i-th phase, Q is energy release of the re-

action, W (η,H) = k0ηe
−E/R(H−

Q
cg

η)
- the chemical reaction

rate according to Arrhenius law, η - relative concentration
of reactive component of the combustible mixture, k0 - pre-
exponential factor, E - activation energy, R - universal gas
constant. It is worth noting here that the speed of the wave
u is a priori unknown.
The Cauchy problem is stated by adding the Dirichlet bound-
ary conditions on the left edge and the Neumann ones on the
right. The initial data correspond to the preheated porous
medium.

2.2 Implementation on a regular and adaptive
meshes

As there is no analytical solution of the problem the suit-
ability of all the constructed algorithms is estimated by com-
parison with the solution obtained on the regular fine mesh
by using the explicit difference scheme:

Tn+1
i = Tn

i + τ (as
Tn
i−1 − 2Tn

i + Tn
i+1

h2
+

+ αs(H
n
i − Tn

i −

Q

cg
ηn
i )), i = 1, ..., M (4)

Hn+1
i = Hn

i + τ (ag
Hn

i−1 − 2Hn
i +Hn

i+1

h2
− v

Hn
i −Hn

i−1

h
+

+ αg(T
n
i −Hn

i +
Q

cg
ηn
i )), i = 1, ..., M (5)

ηn+1
i = ηn

i + τ (ag
ηn
i−1 − 2ηn

i + ηn
i+1

h2
−

− v
ηn
i − ηn

i−1

h
−W (ηn

i ,H
n
i )), i = 1, ...,M. (6)

Here M is the number of spatial steps, size of which h is
chosen from the condition:

maxi |T
N
i (h)− TN

i (2h)|

maxi TN
i (2h)

< 0.02, (7)

where N is the number of time steps. Size of time step
τ must satisfy a stability condition for explicit difference
schemes, that is theoretically unknown, and is fitted exper-
imentally. The table 1 represents values of K(h) and τ (h)
corresponding to different values of h. Here L = 0.1 is length
of the tube.

h L · 2−10 L · 2−11 L · 2−12 L · 2−13 L · 2−14

τ (h) 2−16 2−17 2−19 2−21 2−23

K(h) 0.159 0.096 0.053 0.028 0.014

Table 1: Values of K(h) and τ (h) corresponding to

different values of h

Meanwhile away from the flame front, the solution func-
tions are quite smooth and don’t need such small steps (see
graphic example at Figure 2). Thus, one way to speed up

Figure 2: Graph example of the temperature of solid

T , obtained numerically

the computation seems to be the introduction of an adap-
tive grid. It should depend on the solution from the previous
time step and be concentrated in the area of the chemical
transformation. It’s carried out as follows. Let there be a
full-length regular coarse spatial grid. Implementation of
one time step of the difference scheme on it with the corre-
sponding big time step provides us with the boundary con-
ditions on the next time layer for the small task, that is
stated in the vicinity of the chemical reaction zone similarly
the large one. For this enclosed task the denser time-space
mesh is used. The initial data and boundary conditions at
the every time layer are obtained by the means of linear in-
terpolation from the coarse mesh. After the execution of all
the steps of the subproblem the values of coarse-grid solu-
tions in the nodes used for interpolation are replaced with
the corresponding values from the embedded problem (see
Figure 3, where n is the number of the current time layer
of the general problem, p is the number of time steps of the
subproblem, i0 is the number of the node where W gets its
maximum). The dense grid moves according to the prop-
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Figure 3: The scheme of the two-level algorithm

Figure 4: The scheme of the movement of the adap-

tive fine grid

agation of the combustion front: as soon as the maximum
point of W function moves by the spatial step of the coarse
grid, the fine mesh moves by the same distance (see Figure
4). This approach allows us to take big spatial and time
steps outside the chemical reaction zone. The numerical ex-
periments show that to achieve the same accuracy grade one
may use the coarse grid with the spatial step four times big-
ger than the one of fine grid. That implies about sixteen
times bigger time steps. It is obvious thus that the usage
of such two-level time mesh is indispensable in the problem
like the one in question.

3. PARALLELIZATION
3.1 Classical way
The simplest and the most obvious way to implement the
program on a multiprocessor node is application of OpenMP
pragmas to the inner loops of the program. All the arrays
in this case are shared and all the threads work to fill each
of them. As a result data of different types are held in
the storages of different threads and the threads have to
communicate intensively. In the case of the regular mesh
it concerns to the separate computations of the exponent
values and the values of η in the scheme equations of which
they are used, as well as to the move from one time layer
to another. The situation is far more complicated for the
algorithm with the enclosed fine mesh, because in this case
there are a lot of bottlenecks besides the mentioned ones,
related to the repeated transition from coarse mesh to the
fine one and back. Such way of parallelism provides some
acceleration for the execution of regular mesh algorithm, but
it leads even to the slowdown of the computation when the
adaptive mesh is used.

3.2 Data distribution

To reduce the time for the exchange of data flows we pro-
pose to distribute the data between the threads. In the case
of regular mesh by these words we mean the following pro-
cedure. The spatial grid is divided into z pieces, where z
is the number of threads used, and each thread gets control
over one of the pieces: thread number zero deals with nodes
[0, . . . ,M/z], the next one – with [M/z, . . . , 2M/z] and so
on. The last one deals with nodes [(z−1)M/z, . . . ,M ]. Each
thread creates its local arrays, fills them in accordance with
the difference scheme, and outputs the results on its assigned
grid nodes. On a regular grid we thus obtain practically in-
dependent tasks exchanging only boundary conditions.
In the case of adaptive grids communication becomes more
complicated because of the need to transfer information from
the nodes of the fine mesh to those of the coarse one. In this
case the data distribution algorithm has few stages. Af-
ter n time steps of general task we have data distributed
across z threads: [0, . . . ,Mc/z], [Mc/z, . . . , 2Mc/z], . . . , [(z−
1)Mc/z, . . . ,Mc] and shared arrays of size (Mf + 1), where
Mc, Mf are the numbers of nodes of the coarse and fine
meshes respectively. The first stage is the implementation
of one time step of coarse grid by every thread separately
(see Figure 5). The second stage prepares the data for the

Figure 5: The first stage of data distribution algo-

rithm in the case of adaptive grid

inner problem. It is meant that the position of the fine grid
with respect to the coarse one is known and ileft, iright are
the numbers of the nodes being the edges of the enclosed
grid. Initial data obtained by interpolation from the layer n
of coarse grid are entered to the shared arrays and then redis-
tributed across z threads, forming the layer (n+0/p) of the
enclosed problem (Figure 6). Then the enclosed problem is

Figure 6: The second stage of data distribution al-

gorithm in the case of adaptive grid
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solved in parallel by analogy with the first stage, i.e. steps
(n + 1/p), . . . , (n + p/p) are implemented by every thread
separately (Figure 7). The last stage is the opposite to the

Figure 7: The third stage of data distribution algo-

rithm in the case of adaptive grid

second one. The solution obtained from the layer (n+ p/p)
of the inner problem is entered to the shared array and then
necessary data are transmitted to the sertain threads in ac-
cording to the data distribution on the coarse grid. Besides
that the position of the adaptive grid is determined at this
step.

Figure 8: Computational time of all the algorithms

depending on the number of threads z: A - regular

mesh and direct usage of OpenMP pragmas, B - reg-

ular mesh and usage of parallelism based on the data

distribution, C - adaptive mesh and direct usage of

OpenMP pragmas, D - adaptive mesh and usage of

parallelism based on the data distribution; obtained

with NKS-30T of SSCC

To get more detailed information about the construction
of the adaptive grid and implementation of the respective
algorithm with the data distribution see [4].

4. RESULTS
Numerical experiments were held for the model with the
tube length L = 0.1 m for the physical time t = 15.0 s. All
the calculations were performed either on NKS-30T Clus-
ter of Siberian Super Computer Center (SSCC), each node

Figure 9: Computational time of all the algorithms

depending on the number of threads z: A - regular

mesh and direct usage of OpenMP pragmas, B -

regular mesh and usage of parallelism based on the

data distribution; obtained with MVS-10P of JSCC

RAS

of which contains two processors Intel R©Xeon R©X5670 (12M
Cache, 2.93 GHz, 6.40 GT/s Intel R©QPI, 6 cores), or on
MVS-10P of Joint Supercomputer Center of the Russian
Academy of Sciences (JSCC), each node of which contains
two processors Xeon R©E5-2690 (20M Cache, 2.90 GHz, 8.00
GT/s Intel R©QPI, 8 cores). Hyper-threading is turned off,
the KMP Affinity environment variable is set equal to ”com-
pact”. At the Figure 8 one may see a bar chart of the compu-
tational time of each algorithm executed on NKS-30T SSCC.
First of all the importance of introduction of the adaptive
grid in the case of sequentially running programs is well seen
from this picture. The use of this technique reduces com-
putational time by a factor of 22 when the only one thread
works. Secondly one could easily compare the efficiency of
both methods of parallelization applied. In the case of the
regular mesh the direct application of OpenMP directives
provides some improvement for the number of threads less
or equal 6. As the number of threads grows data amount be-
comes less while the quantity of data transmissions increases
greatly. So for more than 6 threads there is slowdown of par-
allel computation based on direct usage of OpenMP prag-
mas. The proposed data distribution algorithm, in opposite,
shows rather good scalability per number of threads up to
z = 12 in this case. The same data are presented by the
means of the Table 2 as well.

Analogous results for the regular mesh obtained on MVS-
10P cluster are presented at the Figure 9 and in the Table
3. It is seen that the same calculations take a little less
time, but the general situation is still the same up to 16
threads. As concerns the algorithm with the enclosed prob-
lem the first method of parallelization is inadmissible since
the more threads is used the longer computation lasts. At
the same time it is seen that for the algorithm with the en-
closed problem even the proposed method doesn’t provide
good scalability though has better effect than the usage of
OpenMP pragmas. So there is an opportunity that with the
greater number of threads the usage of the adaptive grid
might become ineffective.
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number of 1 2 4 6 8 12
threads z

A 400 214 137 112 143 166
B - 260 125 83.0 68.3 46.1
C 17.8 13.7 12.8 14.0 25.4 35.3
D - 10.4 6.69 5.82 7.82 8.69

Table 2: Computational time of all the algorithms

depending on the number of threads z: A - regular

mesh and direct usage of OpenMP pragmas, B - reg-

ular mesh and usage of parallelism based on the data

distribution, C - adaptive mesh and direct usage of

OpenMP pragmas, D - adaptive mesh and usage of

parallelism based on the data distribution; obtained

with NKS-30T of SSCC

number of 1 2 4 6 8 12 16
threads z

A 323 178 112 90.2 77.4 113 115
B - 203 103 68.2 54.2 38.7 33.5

Table 3: Computational time of all the algorithms

depending on the number of threads z: A - regular

mesh and direct usage of OpenMP pragmas, B -

regular mesh and usage of parallelism based on the

data distribution; obtained with MVS-10P of JSCC

RAS

5. CONCLUSIONS
The appearance of supercomputers and elaboration of par-
allel technology have given renewed impetus for the further
development of numerical methods and has opened the doors
for the modeling of complex tasks. The problem of FGC is
the one of such problems. The specific of its solutions causes
the usage of an adaptive mesh to be extremely efficient for
the numerical simulation of FGC processes in the case of se-
quential implementation. However, one should pay special
attention to the parallel realization of such an algorithm,
since unfortunate parallelization might not only show un-
satisfactory scalability, but even augment the computational
time with increasing number of threads. At the same time
the fact, that the number of cores on the computational node
constantly grows and the influence of parallelism increases,
implies the need to construct new algorithms permitting al-
most perfect scaling in the number of threads.
In the paper a special approach to the issue of shared mem-
ory parallelism based on the distribution of data across threads
has been proposed. It has been applied to the algorithms
both with the regular and the adaptive grids. The results
of comparison this method with the classical one, when
OpenMP directives is applied to all the internal loops of
the program, have shown that the proposed method is more
efficient for the task in question and is acceptable to the
parallel implementation of the algorithm with the usage of
embedded fine mesh. All calculations were performed for the
problem with characteristic dimensions and empirically cho-
sen parameters of the mathematical model. Solutions pro-
duced by all the constructed algorithms have the required
accuracy grade of approximation and correspond to physical
data. Meanwhile the computational time is reduced by 10
times in the case of the regular mesh and by 3 times in the
case of the adaptive one by the use of the proposed method

of parallelization.
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