Page 11 - 8th European Congress of Mathematics ∙ 20-26 June 2021 ∙ Portorož, Slovenia ∙ Book of Abstracts
P. 11
CONTENTS
MS in Analysis and its Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Approximation Theory and Applications (MS-78) . . . . . . . . . . . . . . . . . . . 123
Laura Angeloni: Variation diminishing type estimates for generalized sampling operators
and applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Alina Ramona Baias: Best Ulam constant of a linear difference equation . . . . . . . . . 124
Mirosław Baran: A generalization of extremal functions and polynomial inequalities . . . . 125
Carlo Bardaro: A complex funtion theory for Mellin Analysis and applications to sampling . 125
Tomasz Beberok: A generalization of a local form of the classical Markov inequality . . . 126
Elena Berdysheva: Metric Fourier approximation of set-valued functions of bounded variation126
Marcin Bilski: Piecewise-regular approximation of maps into real algebraic sets . . . . . . 126
Martin Buhmann: Discretisation of integrals on compact spaces using distance functions . 127
Mirella Cappelletti Montano: Integral-type operators on mobile intervals . . . . . . . . 127
Wolfgang Erb: Kernel-based approximation methods on graphs . . . . . . . . . . . . . . 127
Janin Jäger: Strict positive definiteness of non-radial kernels on d-dimensional spheres . . . 128
Agnieszka Kowalska: Admissible meshes on algebraic sets . . . . . . . . . . . . . . . . 128
Elisabeth Larsson: An iso-geometric radial basis function partition of unity method for
PDEs in thin structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Vita Leonessa: Bernstein-Chlodovsky operators preserving exponentials . . . . . . . . . . 129
Diana Otrocol: Functional differential equations with maxima, via step by step contraction
principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Michele Piconi: Approximation by Durrmeyer-Sampling Type Operators in Functional Spaces130
Rafał Pierzchała: Hölder continuity of the pluricomplex Green function . . . . . . . . . . 131
Dorian Popa: Best Ulam constant of a linear differential operator . . . . . . . . . . . . . 131
Carmen Violeta Popescu (Muraru): Modification of exponential type operators preserving
exponential functions connected with x3 . . . . . . . . . . . . . . . . . . . . . . . . 132
Pas, ca Raluca Ioana: A Hermite-Hadamard type inequality with applications to the estima-
tion of moments of convex functions of random variables . . . . . . . . . . . . . . . . 132
Ioan Rasa: Information potential for some probability distributions . . . . . . . . . . . . 132
Augusta Ratiu: Bounds for Several Statistical Indicators . . . . . . . . . . . . . . . . . 132
Gabriele Santin: Sampling strategies for approximation in kernel spaces . . . . . . . . . . 132
Daniel Florin Sofonea: Inequalities for Legendre polynomials and applications in informa-
tion potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Margaret Stawiska Friedland: Gauss-Lucas theorem in polynomial dynamics . . . . . . . 133
Gert Tamberg: On derivative sampling using Kantorovich-type sampling operators . . . . 134
Luca Zampogni: A general method to study the convergence of nonlinear operators in Orlicz
spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Convex bodies - approximation and sections (MS-61) . . . . . . . . . . . . . . . . . . 135
Gergely Ambrus: Extremal sections and local optimization . . . . . . . . . . . . . . . . 136
Imre Bárány: Cells in the box and a hyperplane . . . . . . . . . . . . . . . . . . . . . . 136
Károly Bezdek: A new look at the Blaschke-Leichtweiss theorem . . . . . . . . . . . . . 136
Karoly Boroczky: The Lp Minkowski problem and polytopal approximation . . . . . . . . 137
Ferenc Fodor: Strengthened inequalities for the mean width . . . . . . . . . . . . . . . . 137
Viktória Földvári: Colorful Helly-type Theorems for Ellipsoids . . . . . . . . . . . . . . 137
Nora Frankl: Coverings by homothets of a convex body . . . . . . . . . . . . . . . . . . 137
Bernardo González Merino: The Golden ratio and high dimensional mean inequalities . . 137
Grigory Ivanov: Functional John and Löwner Ellipsoids . . . . . . . . . . . . . . . . . 138
9
MS in Analysis and its Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Approximation Theory and Applications (MS-78) . . . . . . . . . . . . . . . . . . . 123
Laura Angeloni: Variation diminishing type estimates for generalized sampling operators
and applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Alina Ramona Baias: Best Ulam constant of a linear difference equation . . . . . . . . . 124
Mirosław Baran: A generalization of extremal functions and polynomial inequalities . . . . 125
Carlo Bardaro: A complex funtion theory for Mellin Analysis and applications to sampling . 125
Tomasz Beberok: A generalization of a local form of the classical Markov inequality . . . 126
Elena Berdysheva: Metric Fourier approximation of set-valued functions of bounded variation126
Marcin Bilski: Piecewise-regular approximation of maps into real algebraic sets . . . . . . 126
Martin Buhmann: Discretisation of integrals on compact spaces using distance functions . 127
Mirella Cappelletti Montano: Integral-type operators on mobile intervals . . . . . . . . 127
Wolfgang Erb: Kernel-based approximation methods on graphs . . . . . . . . . . . . . . 127
Janin Jäger: Strict positive definiteness of non-radial kernels on d-dimensional spheres . . . 128
Agnieszka Kowalska: Admissible meshes on algebraic sets . . . . . . . . . . . . . . . . 128
Elisabeth Larsson: An iso-geometric radial basis function partition of unity method for
PDEs in thin structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Vita Leonessa: Bernstein-Chlodovsky operators preserving exponentials . . . . . . . . . . 129
Diana Otrocol: Functional differential equations with maxima, via step by step contraction
principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Michele Piconi: Approximation by Durrmeyer-Sampling Type Operators in Functional Spaces130
Rafał Pierzchała: Hölder continuity of the pluricomplex Green function . . . . . . . . . . 131
Dorian Popa: Best Ulam constant of a linear differential operator . . . . . . . . . . . . . 131
Carmen Violeta Popescu (Muraru): Modification of exponential type operators preserving
exponential functions connected with x3 . . . . . . . . . . . . . . . . . . . . . . . . 132
Pas, ca Raluca Ioana: A Hermite-Hadamard type inequality with applications to the estima-
tion of moments of convex functions of random variables . . . . . . . . . . . . . . . . 132
Ioan Rasa: Information potential for some probability distributions . . . . . . . . . . . . 132
Augusta Ratiu: Bounds for Several Statistical Indicators . . . . . . . . . . . . . . . . . 132
Gabriele Santin: Sampling strategies for approximation in kernel spaces . . . . . . . . . . 132
Daniel Florin Sofonea: Inequalities for Legendre polynomials and applications in informa-
tion potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Margaret Stawiska Friedland: Gauss-Lucas theorem in polynomial dynamics . . . . . . . 133
Gert Tamberg: On derivative sampling using Kantorovich-type sampling operators . . . . 134
Luca Zampogni: A general method to study the convergence of nonlinear operators in Orlicz
spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Convex bodies - approximation and sections (MS-61) . . . . . . . . . . . . . . . . . . 135
Gergely Ambrus: Extremal sections and local optimization . . . . . . . . . . . . . . . . 136
Imre Bárány: Cells in the box and a hyperplane . . . . . . . . . . . . . . . . . . . . . . 136
Károly Bezdek: A new look at the Blaschke-Leichtweiss theorem . . . . . . . . . . . . . 136
Karoly Boroczky: The Lp Minkowski problem and polytopal approximation . . . . . . . . 137
Ferenc Fodor: Strengthened inequalities for the mean width . . . . . . . . . . . . . . . . 137
Viktória Földvári: Colorful Helly-type Theorems for Ellipsoids . . . . . . . . . . . . . . 137
Nora Frankl: Coverings by homothets of a convex body . . . . . . . . . . . . . . . . . . 137
Bernardo González Merino: The Golden ratio and high dimensional mean inequalities . . 137
Grigory Ivanov: Functional John and Löwner Ellipsoids . . . . . . . . . . . . . . . . . 138
9