Page 32 - 8th European Congress of Mathematics ∙ 20-26 June 2021 ∙ Portorož, Slovenia ∙ Book of Abstracts
P. 32
CONTENTS

Gianni Pagnini: Should I stay or should I go? Zero-size jumps in random walks for Lévy flights519
Fernando Quirós: A heat equation with memory: large-time behavior . . . . . . . . . . . 520
Antonio Segatti: On the dynamics of Ginzburg-Landau vortices on a Riemannian Manifold 520
Nikita Simonov: Global Harnack principle for a class of fast diffusion equations . . . . . 521
Enrico Valdinoci: Nonlocal minimal graphs in the plane are generically sticky . . . . . . . 521
Juan Luis Vazquez: Nonlinear fractional parabolic equations . . . . . . . . . . . . . . . 522
Zoran Vondracˇek: On boundary decay of harmonic functions, Green kernels and heat ker-

nels for some non-local operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 522

Nonsmooth Variational Methods for PDEs and Applications in Mechanics (MS-8) . 523
Klemens Fellner: On hysteresis reaction-diffusion systems and application in population
dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
Sofia Giuffrè: Lagrange multipliers and nonconstant gradient constrained problem . . . . 524
Hiromichi Itou: On an inverse crack problem in a linearized elasticity by the enclosure method525
Michael Kniely: Analysis and Numerical Experiments of a Variance Reduction Technique
for Effective Energies of Random Atomic Lattices . . . . . . . . . . . . . . . . . . . 526
Victor A. Kovtunenko: Shape differentiability of semilinear equilibrium-constrained opti-
mization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526
Mikhail Lavrentiev: Singular perturbation approximation for the Kuramoto-Sakaguchi integro-
differential model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527

PDE models in life and social sciences (MS-71) . . . . . . . . . . . . . . . . . . . . . 529
Rafael Bailo: Pedestrian Models with Congestion Effects . . . . . . . . . . . . . . . . . 530
Maria Bruna: Phase separation in active Brownian particles . . . . . . . . . . . . . . . 530
Jeremy Budd: Linking graph Allen–Cahn and MBO with fidelity, towards applications in
classification and imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530
Diogo Gomes: Particle methods for local mean-field games . . . . . . . . . . . . . . . . 531
Jan Haskovec: Asymptotic consensus in the Hegselmann-Krause model with finite speed of
information propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
Lisa Maria Kreusser: Mean-field optimal control for biological pattern formation . . . . . 531
Álvaro Mateos González: A Hamilton-Jacobi formalism for the study of propagation in
reaction-subdiffusion systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532
Dietmar Oelz: Classification and stability analysis of polarising and depolarising travelling
wave solutions for a model of collective cell migration. . . . . . . . . . . . . . . . . . 532
Oliver Tse: On Generalised Gradient Flows . . . . . . . . . . . . . . . . . . . . . . . 533
Havva Yoldas¸: Asymptotic behaviour of the run and tumble equation for bacterial chemotaxis 533
Mattia Zanella: Kinetic and macroscopic models for epidemic dynamics . . . . . . . . . . 533

Partial differential equations describing far-from-equilibrium open systems (MS-51) 535
Anna Abbatiello: On the stability of generalized viscous heat-conducting incompressible
fluids with non-homogeneous boundary temperature . . . . . . . . . . . . . . . . . . 536
Benjamin Ambrosio: Bifurcations, pattern formation and synchronization in a few RD sys-
tems and networks of RD systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 536
Tobias Barker: A quantitative approach to the Navier-Stokes equations . . . . . . . . . . 536
Tomas Barta: Polynomial decay of solutions to integrodifferential equations . . . . . . . . 537
Miroslav Bulícˇek: Far-from-equilibrium open systems: problems and tasks . . . . . . . . 537
Michele Coti Zelati: Nonlinear inviscid damping and shear-buoyancy instability in the two-
dimensional Boussinesq equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 537

30
   27   28   29   30   31   32   33   34   35   36   37