Page 199 - Hozjan, Dejan, ur., 2015. Razvijanje kakovosti na Univerzi na Primorskem. Založba Univerze na Primorskem, Koper.
P. 199
kako izobraziti študente razrednega pouka za učinkovito poučevanje ...
Clarke, Doug, Jill Cheeseman, Ann Gervasoni, Donna Gronn, Marj Horne, Andrea Mc-
Donough, Pam Montgomery, Anne Roche, Peter Sullivan, Barbara Clarke, and
Glenn Rowley. 2002. »Early Numeracy Research Project (ENRP): Final Report.«
http://www.education.vic.gov.au/studentlearning/teaching\-resources/maths/enrp/de-
fault.htm.
Cotič, Mara. »Uvajanje vsebin iz statistike in verjetnosti ter razširitev pojma matematič-
nega problema pri razrednem pouku matematike.« PhD diss., Univerza v Ljubljani,
1998.
Craig, Helen J., Richard J. Kraft, and Joy Du Plessis. Teacher Development: Making an Im-
pact. Washington: ABEL Clearinghouse for Basic Education, AED; Human Develo-
pment Network, The World Bank, 1998.
DeFranco, Thomas C., and Frances R. Curcio. »A Division Problem with a Remainder
Embedded across Two Contexts: Children‘s Solutions in Restrictive versus Real-Wor-
ld Settings.« Focus on Learning Problems in Mathematics 19, no. 2 (1997): 58–72.
Evropska komisija. 2007. »Key Competences for Lifelong Learning – European Referen-
ce Framework.« Luxembourg: Office for Official Publications of the European Com-
munities, 2007.
Greer, Brian. »The Mathematical Modeling Perspective on Wor(l)d Problems.« Journal of
Mathematical Behavior 12, no. 3 (1993): 239–50.
Leu, Elizabeth, Francy Hays, Donna K. LeCzel, and Barbara O‘Grady. Quality teaching:
Building a Flexible and Dynamic Approach. Washington: AED, Global Education
Center, 2005.
Packer, Arnold. »What Mathematics Should Everyone Know and Be Able To Do?« In
Quantitative Literacy: Why Numeracy Matters for Schools and Colleges, edited by Ber-
nard L. Madison and Lynn Arthur Steen, 33–42. Princeton: National Council on
Education and the Disciplines, 2003.
Renkl, Alexander. »Learning Mathematics from Worked-Out Examples: Analyzing and
Fostering Self-Explanations.« European Journal of Psychology of Education 14, no. 4
(1999): 477–88.
Renkl, Alexander, and Elsbeth Stern. »Die Bedeutung von kognitiven Eingangsvoraus-
setzungen und schulischen Lerngelegenheiten für das Lösen von einfachen und kom-
plexen Textaufgaben.« Zeitschrift für Pädagogische Psychologie 8, no. 1 (1994): 27–39.
Reusser, Kurt, and Rita Stebler. »Every Word Problem Has a Solution – The Social Ra-
tionality of Mathematical Modelling in Schools.« Learning and Instruction 7, no. 4
(1997): 309–27.
Reynolds, David, and Daniel Muijs. »The Effective Teaching of Mathematics: A Review of
Research.« School Leadership & Management 19, no. 3 (1999): 273–89.
Schon, Donald, and Joseph McDonald. Doing What You Mean To Do in School Reform.
Providence: Brown University Press, 1998.
UNESCO. »EFA Global Monitoring Report 2005: Education for All – The Quality Im-
perative.« Paris: UNESCO, 2004.
Verschaffel, Lieven, Erik De Corte, and Sabien Lasure. »Realistic Considerations in
Mathematical Modelling of School Arithmetic Word Problems.« Learning and In-
struction 4 (1994): 273–94.
197
Clarke, Doug, Jill Cheeseman, Ann Gervasoni, Donna Gronn, Marj Horne, Andrea Mc-
Donough, Pam Montgomery, Anne Roche, Peter Sullivan, Barbara Clarke, and
Glenn Rowley. 2002. »Early Numeracy Research Project (ENRP): Final Report.«
http://www.education.vic.gov.au/studentlearning/teaching\-resources/maths/enrp/de-
fault.htm.
Cotič, Mara. »Uvajanje vsebin iz statistike in verjetnosti ter razširitev pojma matematič-
nega problema pri razrednem pouku matematike.« PhD diss., Univerza v Ljubljani,
1998.
Craig, Helen J., Richard J. Kraft, and Joy Du Plessis. Teacher Development: Making an Im-
pact. Washington: ABEL Clearinghouse for Basic Education, AED; Human Develo-
pment Network, The World Bank, 1998.
DeFranco, Thomas C., and Frances R. Curcio. »A Division Problem with a Remainder
Embedded across Two Contexts: Children‘s Solutions in Restrictive versus Real-Wor-
ld Settings.« Focus on Learning Problems in Mathematics 19, no. 2 (1997): 58–72.
Evropska komisija. 2007. »Key Competences for Lifelong Learning – European Referen-
ce Framework.« Luxembourg: Office for Official Publications of the European Com-
munities, 2007.
Greer, Brian. »The Mathematical Modeling Perspective on Wor(l)d Problems.« Journal of
Mathematical Behavior 12, no. 3 (1993): 239–50.
Leu, Elizabeth, Francy Hays, Donna K. LeCzel, and Barbara O‘Grady. Quality teaching:
Building a Flexible and Dynamic Approach. Washington: AED, Global Education
Center, 2005.
Packer, Arnold. »What Mathematics Should Everyone Know and Be Able To Do?« In
Quantitative Literacy: Why Numeracy Matters for Schools and Colleges, edited by Ber-
nard L. Madison and Lynn Arthur Steen, 33–42. Princeton: National Council on
Education and the Disciplines, 2003.
Renkl, Alexander. »Learning Mathematics from Worked-Out Examples: Analyzing and
Fostering Self-Explanations.« European Journal of Psychology of Education 14, no. 4
(1999): 477–88.
Renkl, Alexander, and Elsbeth Stern. »Die Bedeutung von kognitiven Eingangsvoraus-
setzungen und schulischen Lerngelegenheiten für das Lösen von einfachen und kom-
plexen Textaufgaben.« Zeitschrift für Pädagogische Psychologie 8, no. 1 (1994): 27–39.
Reusser, Kurt, and Rita Stebler. »Every Word Problem Has a Solution – The Social Ra-
tionality of Mathematical Modelling in Schools.« Learning and Instruction 7, no. 4
(1997): 309–27.
Reynolds, David, and Daniel Muijs. »The Effective Teaching of Mathematics: A Review of
Research.« School Leadership & Management 19, no. 3 (1999): 273–89.
Schon, Donald, and Joseph McDonald. Doing What You Mean To Do in School Reform.
Providence: Brown University Press, 1998.
UNESCO. »EFA Global Monitoring Report 2005: Education for All – The Quality Im-
perative.« Paris: UNESCO, 2004.
Verschaffel, Lieven, Erik De Corte, and Sabien Lasure. »Realistic Considerations in
Mathematical Modelling of School Arithmetic Word Problems.« Learning and In-
struction 4 (1994): 273–94.
197