Page 163 - Leech, Jonathan E. 2020. Noncommutative Lattices: Skew Lattices, Skew Boolean Algebras and Beyond. Koper: University of Primorska Press
P. 163
IV: Skew Boolean Algebras
References
A. Bauer and K. Cvetko-Vah,
Stone duality for skew Boolean intersection algebras, Houston Journal of Mathematics,
39 (2013), 73 – 109.
A. Bauer and K. Cvetko-Vah, M. Gerkhe, G. Kudryatseva and S. van Gool,
A noncommutative Priestly duality, Topology and Applications, 160 (2013), 1423 – 1438.
J. Berendsen, D. Jansen, J. Schmaltz and F. Vaandrager,
The axiomatization of overriding and update, J. of Applied Logic, 8 (2010), 141–150.
R. J. Bignall,
Quasiprimal varieties and components of universal algebras, Flinders University of
South Australia Dissertation,1976.
R. J. Bignall and J. Leech,
Skew Boolean algebras and discriminator varieties, A. Universalis 33 (1995), 387 – 398.
R. J. Bignall, and M. Spinks,
Propositional skew Boolean logic, Proc. of the 26th International Symposium on
Multiple-valued Logic (1996), IEEE Computer Society Press, 43 – 48.
Multiple-valued logic as a programming language, Proc. of the 27th International
Symposium on Multiple-valued Logic (1997), IEEE Computer Society Press, 227 – 232.
Multiple-valued logics for theorem-proving in first order logic with equality, Proc. of the
28th International Symposium on Multiple-valued Logic (1998), IEEE Computer Society
Press, 102-107.
Implicative BCS-algebra subreducts of skew Boolean algebras, Scientiae Mathematicae
Japonicae, 58 (2003), 629 – 638.
Corrigendum: Implicative BCS-algebra subreducts of skew Boolean algebras, Scientiae
Mathematicae Japonicae, 66 (2007), 387–390.
J. Cirulis,
Nearlattices with an overriding operation, Order, 28 (2011), 33 – 51.
W. H. Cornish,
Boolean skew algebras, Acta Math. Hungary 36 (1980), 281-291.
K. Cvetko-Vah, J. Leech and M. Spinks,
Skew Lattices and Binary Operations on Functions, J. Applied Logic, 11 (2013), 253-
161
References
A. Bauer and K. Cvetko-Vah,
Stone duality for skew Boolean intersection algebras, Houston Journal of Mathematics,
39 (2013), 73 – 109.
A. Bauer and K. Cvetko-Vah, M. Gerkhe, G. Kudryatseva and S. van Gool,
A noncommutative Priestly duality, Topology and Applications, 160 (2013), 1423 – 1438.
J. Berendsen, D. Jansen, J. Schmaltz and F. Vaandrager,
The axiomatization of overriding and update, J. of Applied Logic, 8 (2010), 141–150.
R. J. Bignall,
Quasiprimal varieties and components of universal algebras, Flinders University of
South Australia Dissertation,1976.
R. J. Bignall and J. Leech,
Skew Boolean algebras and discriminator varieties, A. Universalis 33 (1995), 387 – 398.
R. J. Bignall, and M. Spinks,
Propositional skew Boolean logic, Proc. of the 26th International Symposium on
Multiple-valued Logic (1996), IEEE Computer Society Press, 43 – 48.
Multiple-valued logic as a programming language, Proc. of the 27th International
Symposium on Multiple-valued Logic (1997), IEEE Computer Society Press, 227 – 232.
Multiple-valued logics for theorem-proving in first order logic with equality, Proc. of the
28th International Symposium on Multiple-valued Logic (1998), IEEE Computer Society
Press, 102-107.
Implicative BCS-algebra subreducts of skew Boolean algebras, Scientiae Mathematicae
Japonicae, 58 (2003), 629 – 638.
Corrigendum: Implicative BCS-algebra subreducts of skew Boolean algebras, Scientiae
Mathematicae Japonicae, 66 (2007), 387–390.
J. Cirulis,
Nearlattices with an overriding operation, Order, 28 (2011), 33 – 51.
W. H. Cornish,
Boolean skew algebras, Acta Math. Hungary 36 (1980), 281-291.
K. Cvetko-Vah, J. Leech and M. Spinks,
Skew Lattices and Binary Operations on Functions, J. Applied Logic, 11 (2013), 253-
161