Page 164 - Leech, Jonathan E. 2020. Noncommutative Lattices: Skew Lattices, Skew Boolean Algebras and Beyond. Koper: University of Primorska Press
P. 164
Jonathan E. Leech │ Noncommutative Lattices: Skew Lattices, Skew Boolean Algebras and Beyond

265.

K. Cvetko-Vah and A. Salibra,
The connection of skew Boolean algebras and discriminator varieties to Church
algebras, Algebra Universalis, 73 (2015), 369-390.

B. Davey,
On the lattice of subvarieties, Houston Journal of Mathematics, 5 (1979), 183 – 192.

J. A. Kalman,
Lattices with involution, Trans. Amer. Math. Soc., 87 (1958), 485–491.

G. Kudryavtseva,
A refinement of Stone duality to skew Boolean algebras, Algebra Universalis 67 (2012),
397–416.
A dualizing object approach to noncommutative Stone duality, J. Australian. Math. Soc.,
95 (2013), 383-403.
Skew Boolean intersection algebras and set partitions, Order, first online.

G. Kudryavtseva and J. E. Leech
Free skew Boolean algebras, International J. of Algebra and Computation, 26 (2016),
1323-1348.

J. E. Leech,
Skew Boolean algebras, Algebra Universalis 27 (1990), 48-72.
Normal skew lattices, Semigroup Forum 44 (1992), 1 – 8.

J. E. Leech and M. Spinks,
Skew Boolean algebras derived from generalized Boolean algebras, Algebra Universalis
58 (2008), 287–302.
Varieties of skew Boolean algebras with intersections, J. Australian Math. Soc., 102
(2017), 290-306.

P. Pagliani,
Rough set systems and logico-algebraic structures, in E Orlowska (ed.), Incomplete
Information: Rough Set Analysis, Physica-Verlag, 1997, pp. 109–190.
Intrinsic co-Heyting boundaries and information incompleteness in rough set analysis,
Rough Sets and Current Trends in Computing, Lecture Notes in Artificial Intelligence
1424, 1998, pp. 123–130.

M. Spinks,
Contributions to the Theory of Pre-BCK Algebras, Monash University Dissertation, 2002.

M. Spinks and R. Veroff,
Axiomatizing the skew Boolean propositional calculus, J. Automated Reasoning 37
(202006), 3 – 20.

162
   159   160   161   162   163   164   165   166   167   168   169