Page 44 - Kutnar, Andreja, et al., eds., 2015. Proceedings of the 1st COST Action FP1307 International Conference - Life Cycle Assessment, EPDs, and modified wood. University of Primorska Press, Koper.
P. 44
mary
 analysis
 methods
 used
 to
 control
 thermal
 treatments
 of
 wood
 and
 
its
 effect
 on
 decay
 resistance
 

Kévin
  Candelier1,
  Marie-­‐France
  Thévenon1,
  Anélie
  Pétrissans2,
  Stéphane
  Dumarçay2,
 
Philippe
 Gérardin2,
 Mathieu
 Pétrissans2
 

1
 CIRAD-­‐Unité
 de
 Recherches
 BioWooEB,
 73
 Rue
 Jean-­‐François
 Breton
 34398,
 Montpellier,
 
France.
 kevin.candelier@cirad.fr
 

2
  Laboratoire
  d’Etudes
  et
  de
  Recherches
  sur
  le
  Matériau
  Bois,
  EA
  4370,
  Faculté
  des
 
Sciences
 et
 Technologies,
 F-­‐54506
 Vandœuvre-­‐lès-­‐Nancy,
 France.
 


 
Keywords:
 Thermal
 treatment,
 mass
 loss,
 durability,
 prediction
 methods,
 quality
 assessment
 

 

Heat
  treatments
  used
  in
  wood
  processing
  are
  becoming
  increasingly
  popular
  due
  to
  their
  non-­‐
biocide
  nature
  and
  low
  environmental
  impact.
  This
  type
  of
  treatment
  is
  based
  on
  biopolymer
 
chemical
  degradation
  by
  heat
  transfer.
  This
  process
  primarily
  improves
  the
  dimensional
  stability
 
and
 decay
 resistance
 of
 wood
 (Tjeerdsma
 et
 al.
 2000;
 Korkut
 et
 al.
 2012).
 Wood
 becomes
 darker
 
after
  this
  type
  of
  treatment
  altering
  its
  aesthetic
  appearance.
  These
  improvements
  and
  changes
 
come
  at
  the
  expense
  of
  wood’s
  mechanical
  properties
  which
  are
  often
  weakened
  (Dilik
  and
 
Hiziroglu,
  2012).
  These
  modifications
  have
  been
  extensively
  studied
  and
  researches
  have
  shown
 
that
  heat
  treated
  wood
  properties
  are
  correlated
  to
  the
  heat
  treatment
  conditions
  and
  to
  the
 
industrial
 process
 used.
 Recent
 works
 have
 focused
 on
 improving
 our
 knowledge
 of
 wood
 thermal
 
degradation
 reaction
 mechanisms,
 modelling,
 quality
 prediction,
 and
 quality
 control.
 For
 example,
 
the
 most
 efficient
 indicator
 of
 the
 treatment
 efficiency
 is
 the
 mass
 loss
 of
 wood
 due
 to
 its
 thermal
 
degradation.
  It
  also
  remains
  important
  to
  develop
  inexpensive,
  fast,
  and
  non-­‐destructive
 
industrial
 methods
 to
 control
 the
 process
 and
 predict
 heat-­‐treated
 wood
 quality.
 These
 different
 
analysis
  tools
  also
  aim
  to
  have
  a
  reliable
  quality
  assessment
  tool
  ensuring
  good
  material
  decay
 
resistance
  and
  ultimately
  to
  commercialize
  products
  which
  could
  be
  certified
  by
  an
  accredited
 
organization.
 

This
  paper
  describes
  recent
  studies
  and
  synthesizes
  the
  major
  publications
  to
  better
  understand
 
wood
  thermal
  modification
  and
  to
  develop
  control
  and
  prediction
  of
  new
  features
  brought
  to
 
heat
  treated
  wood.
  Several
  studies
  have
  investigated
  non-­‐destructive
  control
  methods
 
appropriate
  for
  industrial
  application.
  Colour
  tests
  are
  used
  to
  determine
  the
  durability
  of
  heat
 
treated
  wood,
  but
  this
  sort
  of
  method
  is
  not
  precise
  or
  efficient
  enough
  to
  account
  for
  the
 
variability
 in
 wood
 or
 treatment
 heterogeneity
 (Johansson
 and
 Morén,
 2006).
 Spectrum
 analyses
 
such
 as
 NIR
 or
 FT-­‐IR
 are
 able
 to
 give
 information
 on
 the
 extent
 of
 processing
 (by
 estimating
 mass
 
loss)
  and
  on
  properties
  relevant
  to
  wood
  modification
  and
  heat
  treated
  wood
  (e.g.
  equilibrium
 
moisture
 content,
 dimensional
 stability,
 and
 decay
 resistance)
 by
 using
 a
 unique
 spectrum
 of
 the
 
solid
 surface
 of
 a
 heat
 treated
 wood
 sample
 (Esteves
 and
 Peireira
 2008;
 Altgen
 et
 al.
 2012;
 Sandak
 


  32
 
   39   40   41   42   43   44   45   46   47   48   49