Page 45 - Kutnar, Andreja, et al., eds., 2015. Proceedings of the 1st COST Action FP1307 International Conference - Life Cycle Assessment, EPDs, and modified wood. University of Primorska Press, Koper.
P. 45
 al.
 2015).
 The
 acquisition
 of
 NIR
 spectra
 can
 be
 done
 quickly
 and
 easily
 on
 a
 solid
 surface
 using
 
a
  fibre
  probe
  and
  spectral
  data
  processing
  can
  be
  done
  immediately
  afterwards.
  This
  type
  of
 
methodology
 has
 good
 potential
 for
 process
 and
 product
 quality
 control
 once
 models
 have
 been
 
calibrated
  and
  validated
  for
  the
  wood
  species
  studied.
  More
  recently,
  utilization
  of
  mechanical
 
testing
 on
 wood
 before
 and
 after
 a
 thermal
 modification
 process
 (non-­‐destructive
 methods,
 such
 
as
 BING®)
 could
 allow
 quick
 and
 easy
 acquisition
 of
 resonant
 frequency
 spectrums
 to
 estimate
 the
 
heat
 treated
 wood
 properties
 (Welzbacher
 et
 al.
 2007;
 Hannouz
 et
 al.
 2012).
 Finally,
 utilization
 of
 
wood
  kinetics
  based
  on
  a
  reference
  area
  is
  easily
  achievable
  at
  an
  industrial
  scale
  using
  a
  heat
 
treatment
  device
  which
  allows
  for
  dynamic
  recording
  of
  wood
  temperature
  throughout
  the
 
process
 (Candelier
 et
 al.
 2015).
 

Due
  to
  differences
  of
  chemical
  composition
  and
  anatomical
  structure
  between
  untreated
  and
 
heat
  treated
  woods,
  it
  is
  necessary
  to
  use
  other
  quality
  characterization
  methods
  for
  modified
 
and
 unmodified
 wood.
 


 

References
 

Altgen
 M.,
 Welzbacher
 C.,
 Humar
 M.,
 Militz
 H.
 2012.
 ESR-­‐spectroscopy
 as
 a
 potential
 method
 for
 the
 quality
 
control
  of
  thermally
  modified
  wood.
  Proceedings
  of
  the
  2nd
  Workshop
  Cost
  Action
  FP0904,
  Nancy,
 
France,
 132-­‐133.
 

Candelier
 K.,
 Hannouz
 S.,
 Elaieb
 M.T.,
 Collet
 R.,
 Dumarçay
 S.,
 Pétrissans
 A.,
 Gérardin
 P.,
 Pétrissans
 M.
 2015.
 
Utilization
  of
  temperature
  kinetic
  as
  a
  method
  to
  predict
  treatment
  intensity
  and
  corresponding
 
treated
  wood
  quality:
  durability
  and
  mechanical
  properties
  of
  thermally
  modified
  wood.
  Maderas-­‐
Cienc.
 Tecnol.,
 17(2),
 DOI:10.4067/S0718-­‐221X2015005000024.
 

Dilik
 T.,
 Hiziroglu
 S.
 2012.
 Bonding
 strength
 of
 heat
 treated
 compressed
 Eastern
 red
 cedar
 wood.
 Materials
 
and
 design
 42,
 317-­‐320.
 

Esteves
 B.,
 Pereira
 H.
 2008.
 Quality
 assessment
 of
 heat
 treated
 wood
 by
 NIR
 spectroscopy.
 Holz
 als
 Roh
 und
 
Werkstoff,
 66,
 323-­‐332.
 

Hannouz
 S.,
 Collet
 R.,
 Bléron
 L.,
 Marchal
 R.,
 Gérardin
 P.
 2012.
 Mechanical
 properties
 of
 heat
 treated
 French
 
species
 wood.
 Proceedings
 of
 the
 2nd
 Workshop
 Cost
 Action
 FP0904,
 Nancy,
 France,
 72-­‐74.
 

Johansson
  D.,
  Moren
  T.
  2006.
  The
  potential
  of
  color
  measurement
  for
  strength
  prediction
  of
  thermally
 
treated
 wood.
 Holz
 Roh-­‐Werkst,
 64,
 104-­‐110.
 

Korkut
  S.,
  Korkut
  D.S.,
  Kocaefe
  D.,
  Elustondo
  D.,
  Bajraktari
  A.,
  Çakıcıer,
  N.
  2012.
  Effect
  of
  thermal
 
modification
  on
  the
  properties
  of
  narrow-­‐leaved
  ash
  and
  chestnut.
  Industrial
  Crops
  and
  Products
  35
 
(1),
 287-­‐294.
 

Sandak
  A.,
  Sandak
  J.,
  Allegrtti
  O.
  2015.
  Quality
  control
  of
  vacuum
  thermally
  modified
  wood
  with
  near
 
infrared
 spectroscopy.
 Vacuum
 114(0),
 44-­‐48.
 

Tjeerdsma
 B.F.,
 Boonstra
 M.,
 Pizzi
 A.,
 Tekely
 P.,
 Militz,
 H.
 1998.
 Characterisation
 of
 the
 thermally
 modified
 
wood:
 molecular
 reasons
 for
 wood
 performance
 improvement.
 Holz
 Roh-­‐Werkst.,
 56,
 149-­‐53.
 

Welzbacher
 C.R.,
 Brischke
 C.,
 Rapp
 O.A.
 2007.
 Influence
 of
 treatment
 temperature
 and
 duration
 on
 selected
 

biological,
  mechanical,
  physical
  and
  optical
  properties
  of
  thermally
  modified
  timber.
  Wood
  Material
 

Science
 and
 Engineering,
 2,
 66-­‐76.
 
 


  33
 
   40   41   42   43   44   45   46   47   48   49   50