Page 55 - Kutnar, Andreja, et al., eds., 2015. Proceedings of the 1st COST Action FP1307 International Conference - Life Cycle Assessment, EPDs, and modified wood. University of Primorska Press, Koper.
P. 55
racterisation
 of
 interactions
 between
 thermally
 modified
 wood
 and
 

water
 

Miha
 Humar1,
 Davor
 Kržišnik2,
 Boštjan
 Lesar3,
 Nejc
 Thaler4,
 Mojca
 Žlahtič5
 

1
 University
 of
 Ljubljana,
 Biotechnical
 Faculty,
 Departement
 of
 Wood
 Science
 and
 
Technology,
 Ljubljana,
 Slovenia,
 miha.humar@bf.uni-­‐lj.si
 
 
2
 University
 of
 Ljubljana,
 Biotechnical
 Faculty,
 Departement
 of
 Wood
 Science
 and
 
Technology,
 Ljubljana,
 Slovenia,
 davor.krzisnik@bf.uni-­‐lj.si
 
 
3
 University
 of
 Ljubljana,
 Biotechnical
 Faculty,
 Departement
 of
 Wood
 Science
 and
 
Technology,
 Ljubljana,
 Slovenia,
 bostjan.lesar@bf.uni-­‐lj.si
 
 
4
 University
 of
 Ljubljana,
 Biotechnical
 Faculty,
 Departement
 of
 Wood
 Science
 and
 
Technology,
 Ljubljana,
 Slovenia,
 nejc.thaler@bf.uni-­‐lj.si
 
 
 
5
 University
 of
 Ljubljana,
 Biotechnical
 Faculty,
 Departement
 of
 Wood
 Science
 and
 
Technology,
 Ljubljana,
 Slovenia,
 mojca.zlahtic@bf.uni-­‐lj.si
 
 


 

Keywords:
 thermal
 modification,
 water
 uptake,
 laboratory
 tests,
 field
 test,
 moisture
 content
 


 

Thermal
 modification
 of
 wood
 is
 one
 of
 the
 most
 important
 modification
 processes.
 Properties
 of
 
this
 material
 predominately
 depend
 upon
 the
 modification
 process,
 temperature
 of
 modification
 
and
  its
  duration.
  Mass
  loss
  during
  modification
  is
  one
  of
  the
  parameters
  that
  characterise
  the
 
modified
  wood.
  In
  general,
  higher
  temperatures
  and
  longer
  modification
  processes
  result
  in
 
higher
  mass
  loss.
  Thermal
  modification
  results
  in
  improved
  durability.
  The
  reasons
  for
  increased
 
durability
  can
  be
  attributed
  to
  the
  lower
  equilibrium
  moisture
  content,
  better
  dimensional
 
stability
  and
  formation
  of
  new
  toxic
  compounds.
  In
  recent
  research
  another
  aspect
  has
  drawn
 
considerable
  attention,
  namely
  water
  exclusion
  efficacy.
  Although
  the
  importance
  of
  this
 
parameter
 has
 been
 identified
 in
 the
 new
 edition
 of
 the
 EN
 350
 (2015)
 durability
 standard,
 there
 
is
  still
  not
  an
  optimal
  method
  developed
  for
  elucidation
  of
  this
  parameter.
  The
  aim
  of
  this
  study
 
was
 to
 compare
 various
 water
 uptake
 techniques
 with
 field
 test
 methods.
 

Specimens
 were
 made
 of
 Norway
 spruce
 heartwood.
 Two
 types
 of
 the
 specimens
 were
 prepared.
 
2.5
 cm
 ×
 5.0
 ×
 cm
 ×
 50
 cm
 (EN
 252
 size)
 and
 1.5
 ×
 cm
 ×
 2.5
 cm
 ×
 5.0
 cm
 (EN
 113
 size).
 They
 were
 
thermally
 modified
 at
 seven
 temperatures:
 25
 °C,
 160
 °C,
 180
 °C,
 190
 °C,
 200
 °C,
 210
 °C,
 and
 230
 
°C.
  The
  modification
  duration
  was
  three
  hours.
  The
  process
  was
  performed
  following
  Rep
  and
 
Pohleven
  (2004).
  Mass
  loss
  of
  the
  specimens
  was
  determined
  gravimetrically.
  Four
  were
  sets
  of
 
tests
 performed.
 In
 the
 first
 set
 EN
 252
 sized
 samples
 were
 soaked
 in
 water
 for
 periods
 between
 8
 
h
 and
 4
 days
 and
 were
 then
 positioned
 on
 load
 cells
 (HMB
 load
 cells,
 PMX
 amplifier,
 Catmaneasy
 
recording
  software)
  and
  were
  allowed
  to
  dry
  until
  a
  constant
  mass
  was
  reached.
  In
  the
  second
 
experiment,
 short
 term
 water
 uptake
 was
 determined
 with
 a
 tensiometer
 (Krüss)
 as
 described
 by
 


  43
 
   50   51   52   53   54   55   56   57   58   59   60