Page 157 - Kukanja Gabrijelčič, Mojca, and Maruška Seničar Željeznov, eds. 2018. Teaching Gifted and Talented Children in A New Educational Era. Koper: University of Primorska Press.
P. 157
Fostering Mathematically Gifted Students with Complex Fields of Problems
Goertz, R. (1999). Multimodale Repräsentation als Basiskomponente krea-
tiven Denkens [Multimodal representation as a basic component of cre-
ative thinking]. In B. Zimmermann, G. David, T. Fritzlar, F. Heinrich & M.
Schmitz (Eds.), Kreatives Denken und Innovationen in mathematischen Wis-
senschaften [Creative thinking and innovations in mathematical sciences]
(pp. 129–142). Jena, Germany: Friedrich-Schiller-Universität.
Krutetskii, V. A. (1976). An investigation of mathematical abilities in schoolchil-
dren. Chicago, IL: University of Chicago.
Mason, J., Burton, L., & Stacey, K. (2010). Thinking mathematically. Harlow, Eng-
land: Pearson.
Nolte, M. (1999). Are elementary school pupils already able to perform cre-
atively substantial bricks of knowledge? A report on first striking findings
from working with smaller groups of highly gifted and motivated elemen-
tary school pupils aged 8–10. In H. Meissner, M. Grassmann & S. Mueller-
Philipp (Eds.), Creativity and mathematics education (pp. 142–145). Münster:
Westfälische Wilhelms-Universität.
Nolte, M. (2012). Mathematically gifted young children: Questions about the
development of mathematical giftedness. In H. Stöger, A. Aljughaiman &
B. Harder (Eds.), Talent development and excellence (pp. 155–176). Berlin, Ger-
many: Lit.
Nolte, M. (2018). Twice-exceptional students: Students with special needs and a
high mathematical potential. In F. M. Singer (Ed.), Mathematical creativity
and mathematical giftedness: Enhancing creative capacities in mathemati-
cally promising students (pp. 199–225). Cham, Switzerland: Springer.
Nolte, M., & Pamperien, K. (2014, July). Conditions of success of mathematical
gifted young children with migration background in a talent search pro-
cess. Paper presented at the 8th conference of the International Group
for Mathematical Creativity and Giftedness, Denver, CO.
Nolte, M., & Pamperien, K. (2017). Challenging problems in a regular classroom
setting and in a special foster programme. Zentralblatt für Didaktik der
Mathematik, 49(1), 121–136.
Paz-Baruch, N., Leikin, M., Aharon-Peretz, J., & Leikin, R. (2014). Speed of infor-
mation processing in generally gifted and excelling-in-mathematics ado-
lescents. High Ability Studies, 25(2), 143–167.
Seidel, G., Krause, W., Schack, B., Heinrich, F., Krause, U., Wiistenberg, T., . . .
Jincke, L. (2001). Entropy reduction and mathematical giftedness: A mi-
crostate study of EEG oscillations. NeuroImage, 13(6), 474.
Singer, F. M., Sheffield, L. J., Freiman, V., & Brandl, M. (2016). Research on and
activities for mathematically gifted students. Cham, Switzerland: Springer.
Subotnik, R. F., Olszewski-Kubilius, P., & Worrell, F. C. (2011). Rethinking gifted-
ness and gifted education. Psychological Science in the Public Interest, 12(1),
3–54.
155
Goertz, R. (1999). Multimodale Repräsentation als Basiskomponente krea-
tiven Denkens [Multimodal representation as a basic component of cre-
ative thinking]. In B. Zimmermann, G. David, T. Fritzlar, F. Heinrich & M.
Schmitz (Eds.), Kreatives Denken und Innovationen in mathematischen Wis-
senschaften [Creative thinking and innovations in mathematical sciences]
(pp. 129–142). Jena, Germany: Friedrich-Schiller-Universität.
Krutetskii, V. A. (1976). An investigation of mathematical abilities in schoolchil-
dren. Chicago, IL: University of Chicago.
Mason, J., Burton, L., & Stacey, K. (2010). Thinking mathematically. Harlow, Eng-
land: Pearson.
Nolte, M. (1999). Are elementary school pupils already able to perform cre-
atively substantial bricks of knowledge? A report on first striking findings
from working with smaller groups of highly gifted and motivated elemen-
tary school pupils aged 8–10. In H. Meissner, M. Grassmann & S. Mueller-
Philipp (Eds.), Creativity and mathematics education (pp. 142–145). Münster:
Westfälische Wilhelms-Universität.
Nolte, M. (2012). Mathematically gifted young children: Questions about the
development of mathematical giftedness. In H. Stöger, A. Aljughaiman &
B. Harder (Eds.), Talent development and excellence (pp. 155–176). Berlin, Ger-
many: Lit.
Nolte, M. (2018). Twice-exceptional students: Students with special needs and a
high mathematical potential. In F. M. Singer (Ed.), Mathematical creativity
and mathematical giftedness: Enhancing creative capacities in mathemati-
cally promising students (pp. 199–225). Cham, Switzerland: Springer.
Nolte, M., & Pamperien, K. (2014, July). Conditions of success of mathematical
gifted young children with migration background in a talent search pro-
cess. Paper presented at the 8th conference of the International Group
for Mathematical Creativity and Giftedness, Denver, CO.
Nolte, M., & Pamperien, K. (2017). Challenging problems in a regular classroom
setting and in a special foster programme. Zentralblatt für Didaktik der
Mathematik, 49(1), 121–136.
Paz-Baruch, N., Leikin, M., Aharon-Peretz, J., & Leikin, R. (2014). Speed of infor-
mation processing in generally gifted and excelling-in-mathematics ado-
lescents. High Ability Studies, 25(2), 143–167.
Seidel, G., Krause, W., Schack, B., Heinrich, F., Krause, U., Wiistenberg, T., . . .
Jincke, L. (2001). Entropy reduction and mathematical giftedness: A mi-
crostate study of EEG oscillations. NeuroImage, 13(6), 474.
Singer, F. M., Sheffield, L. J., Freiman, V., & Brandl, M. (2016). Research on and
activities for mathematically gifted students. Cham, Switzerland: Springer.
Subotnik, R. F., Olszewski-Kubilius, P., & Worrell, F. C. (2011). Rethinking gifted-
ness and gifted education. Psychological Science in the Public Interest, 12(1),
3–54.
155