Page 99 - Fister jr., Iztok, Andrej Brodnik, Matjaž Krnc and Iztok Fister (eds.). StuCoSReC. Proceedings of the 2019 6th Student Computer Science Research Conference. Koper: University of Primorska Press, 2019
P. 99
Linguistics.

[9] N. Donges. The random forest algorith, 2018.

[10] P. F. Brown, V. Dellapietra, P. V. de Souza, J. Lai,
and R. Mercer. Class-based n-gram models of natural
language. Computational Linguistics, 18:467–479, 01
1992.

[11] R. Gandhi. Naive bayes classifier, 2018.

[12] I. Jolliffe. Principal Component Analysis, pages
1094–1096. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2011.

[13] D. Kumar. Demystifying support vector machines,
2019.

[14] J. Miller, M. Torii, and K. Vijay-Shanker. Building
domain-specific taggers without annotated (domain)
data. pages 1103–1111, 01 2007.

[15] S. Patel. Chapter 5: Random forest classifier, 2017.

[16] T. Schnabel and H. Schu¨tze. Flors: Fast and simple
domain adaptation for part-of-speech tagging.
Transactions of the Association for Computational
Linguistics, 2:15–26, 12 2014.

[17] H. Schu¨tze. Part-of-speech induction from scratch.
pages 251–258, 01 1993.

[18] H. Schu¨tze. Distributional part-of-speech tagging.
page 141, 03 1995.

[19] K. Toutanova, D. Klein, C. Manning, and Y. Singer.
Feature-rich part-of-speech tagging with a cyclic
dependency network. Proceedings of the 2003
Conference of the North American Chapter of the
Association for Computational Linguistics on Human
Language Technology—NAACL ’03, 1, 03 2004.

[20] J. Us Gim Enez and L. S M Arquez. Svmtool: A
general pos tagger generator based on support vector
machines. 07 2004.

StuCoSReC Proceedings of the 2019 6th Student Computer Science Research Conference 99
Koper, Slovenia, 10 October
   94   95   96   97   98   99   100   101   102   103   104