Page 99 - Fister jr., Iztok, Andrej Brodnik, Matjaž Krnc and Iztok Fister (eds.). StuCoSReC. Proceedings of the 2019 6th Student Computer Science Research Conference. Koper: University of Primorska Press, 2019
P. 99
Linguistics.
[9] N. Donges. The random forest algorith, 2018.
[10] P. F. Brown, V. Dellapietra, P. V. de Souza, J. Lai,
and R. Mercer. Class-based n-gram models of natural
language. Computational Linguistics, 18:467–479, 01
1992.
[11] R. Gandhi. Naive bayes classifier, 2018.
[12] I. Jolliffe. Principal Component Analysis, pages
1094–1096. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2011.
[13] D. Kumar. Demystifying support vector machines,
2019.
[14] J. Miller, M. Torii, and K. Vijay-Shanker. Building
domain-specific taggers without annotated (domain)
data. pages 1103–1111, 01 2007.
[15] S. Patel. Chapter 5: Random forest classifier, 2017.
[16] T. Schnabel and H. Schu¨tze. Flors: Fast and simple
domain adaptation for part-of-speech tagging.
Transactions of the Association for Computational
Linguistics, 2:15–26, 12 2014.
[17] H. Schu¨tze. Part-of-speech induction from scratch.
pages 251–258, 01 1993.
[18] H. Schu¨tze. Distributional part-of-speech tagging.
page 141, 03 1995.
[19] K. Toutanova, D. Klein, C. Manning, and Y. Singer.
Feature-rich part-of-speech tagging with a cyclic
dependency network. Proceedings of the 2003
Conference of the North American Chapter of the
Association for Computational Linguistics on Human
Language Technology—NAACL ’03, 1, 03 2004.
[20] J. Us Gim Enez and L. S M Arquez. Svmtool: A
general pos tagger generator based on support vector
machines. 07 2004.
StuCoSReC Proceedings of the 2019 6th Student Computer Science Research Conference 99
Koper, Slovenia, 10 October
[9] N. Donges. The random forest algorith, 2018.
[10] P. F. Brown, V. Dellapietra, P. V. de Souza, J. Lai,
and R. Mercer. Class-based n-gram models of natural
language. Computational Linguistics, 18:467–479, 01
1992.
[11] R. Gandhi. Naive bayes classifier, 2018.
[12] I. Jolliffe. Principal Component Analysis, pages
1094–1096. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2011.
[13] D. Kumar. Demystifying support vector machines,
2019.
[14] J. Miller, M. Torii, and K. Vijay-Shanker. Building
domain-specific taggers without annotated (domain)
data. pages 1103–1111, 01 2007.
[15] S. Patel. Chapter 5: Random forest classifier, 2017.
[16] T. Schnabel and H. Schu¨tze. Flors: Fast and simple
domain adaptation for part-of-speech tagging.
Transactions of the Association for Computational
Linguistics, 2:15–26, 12 2014.
[17] H. Schu¨tze. Part-of-speech induction from scratch.
pages 251–258, 01 1993.
[18] H. Schu¨tze. Distributional part-of-speech tagging.
page 141, 03 1995.
[19] K. Toutanova, D. Klein, C. Manning, and Y. Singer.
Feature-rich part-of-speech tagging with a cyclic
dependency network. Proceedings of the 2003
Conference of the North American Chapter of the
Association for Computational Linguistics on Human
Language Technology—NAACL ’03, 1, 03 2004.
[20] J. Us Gim Enez and L. S M Arquez. Svmtool: A
general pos tagger generator based on support vector
machines. 07 2004.
StuCoSReC Proceedings of the 2019 6th Student Computer Science Research Conference 99
Koper, Slovenia, 10 October