Page 24 - Kutnar, Andreja, et al., eds., 2015. Proceedings of the 1st COST Action FP1307 International Conference - Life Cycle Assessment, EPDs, and modified wood. University of Primorska Press, Koper.
P. 24
-­‐materials
 for
 building
 envelope
 -­‐
 expected
 performance,
 life
 cycle
 
costing
 &
 controlled
 degradation
 -­‐
 Bio4ever
 project
 approach
 

Anna
 Sandak1
 

1National
 Research
 Council
 Trees
 and
 Timber
 Institute
 (CNR/IVALSA),
 S.
 Michele
 all’Adige
 
(TN),
 Italy
 
 


 
Keywords:
 bio-­‐materials,
 sustainable
 design,
 service
 life
 performance,
 building
 envelope
 


 

The
  trend
  for
  rapid
  deployment
  of
  novel/advanced
  material
  solutions
  at
  reduced-­‐costs
  through
 
predictive
  design
  of
  materials
  and
  innovative
  production
  technologies
  is
  commonly
  observed
 
today.
 Such
 materials
 are
 optimized
 for
 specified
 applications,
 meeting
 the
 desired
 properties
 and
 
functionality
 for
 an
 elongated
 life,
 minimizing
 the
 environmental
 impact
 and
 reducing
 the
 risk
 of
 
product
  failure.
  As
  a
  consequence,
  higher
  numbers
  of
  well
  performing
  (also
  in
  severe
 
environments)
  construction
  materials
  are
  available
  on
  the
  market.
  It
  is
  extremely
  important
  for
 
the
  bio-­‐materials
  production
  sector
  to
  follow
  this
  trend
  and
  to
  continuously
  improve
  their
 
products.
  The
  development
  of
  highly
  innovative
  and
  advanced
  bio-­‐products
  relies
  on
  a
  thorough
 
understanding
  of
  the
  material
  properties,
  structure,
  assembly,
  formulation,
  and
  performance
 
throughout
 the
 service
 life.
 
The
  Bio4ever
  project
  is
  multi-­‐disciplinary
  and
  dedicated
  to
  filling
  gaps
  in
  knowledge
  regarding
 
some
 fundamental
 properties
 of
 novel
 bio-­‐based
 building
 materials.
 The
 two
 driving
 objectives
 of
 
the
 projects
 are:
 

  to
 promote
 the
 use
 of
 bio-­‐materials
 in
 modern
 construction
 by
 understanding/modelling
 
its
 performance
 as
 a
 function
 of
 time
 and
 weathering
 conditions
 

  to
  identify
  the
  most
  sustainable
  treatments
  of
  bio-­‐material
  residues
  at
  the
  end
  of
  life,
 
further
 improving
 their
 environmental
 impact.
 
The
  overall
  goal
  is
  to
  assure
  the
  sustainable
  development
  of
  the
  wood-­‐related
  construction
 
industry,
  taking
  into
  consideration
  environmental,
  energy,
  socio-­‐economic,
  and
  cultural
  issues.
 
This
 can
 be
 achieved
 by
 developing
 original,
 reliable
 tools
 demonstrating
 advantages
 of
 using
 bio-­‐
based
  materials
  when
  compared
  to
  other
  building
  resources.
  A
  comprehensive
  understanding
  of
 
the
  physical/chemical
  properties
  and
  their
  connection
  with
  the
  material's
  structure
  will
  be
 
obtained
  as
  a
  result
  of
  a
  combination
  of
  analytical/experimental
  methods
  and
  numerical
 
modelling.
 


  12
 
   19   20   21   22   23   24   25   26   27   28   29