Page 81 - Kutnar, Andreja, et al., eds., 2015. Proceedings of the 1st COST Action FP1307 International Conference - Life Cycle Assessment, EPDs, and modified wood. University of Primorska Press, Koper.
P. 81
act
 of
 thermal
 treatment
 on
 moisture-­‐dependent
 elasto-­‐plastic
 

behaviour
 of
 beech
 

Straže
 A.1,
 Fajdiga
 G.1,
 Pervan
 S.2,
 Gorišek
 Ž.1
 

1
 University
 of
 Ljubljana,
 Biotechnical
 Faculty,
 Jamnikarjeva
 101,
 SI-­‐1000
 Ljubljana,
 

Slovenia;
 ales.straze@bf.uni-­‐lj.si
 

2
 University
 of
 Zagreb,
 Faculty
 of
 forestry,
 Svetošimunska
 25,
 HR-­‐10000
 Zagreb,
 Croatia
 


 

Keywords:
 
  thermo-­‐modified
  wood,
  elasto-­‐plasticity,
  compression
  test,
  moisture
 
content
 


 

Strength
  and
  stiffness
  alteration
  are
  important
  properties
  of
  thermally
  treated
  wood,
  and
  vary
 
with
  anatomical
  direction
  of
  wood,
  testing
  method,
  and
  wood
  species.
  Since
  wood
  density
  is
 
commonly
  decreased
  after
  thermal
  treatment
  (Poncsak
  et
  al.
  2006),
  one
  might
  expect
  a
  similar
 
trend
  with
  material
  strength
  and
  stiffness.
  However,
  the
  reduction
  of
  hydrogen
  bonding
  and
  a
 
decrease
  in
  free
  accessible
  hydroxyl
  groups
  are
  often
  present
  in
  thermally
  treated
  wood
 
(Boonstra
  and
  Tjeerdsma
  2006),
  and
  lead
  to
  a
  decrease
  in
  equilibrium
  moisture
  content
  (EMC)
 
(Esteves
 and
 Pereira
 2009).
 There
 is
 a
 known
 negative
 correlation
 between
 moisture
 content
 (MC),
 
and
  strength
  and
  stiffness
  (Ozyhar
  et
  al.
  2013).
  While
  there
  is
  a
  positive
  correlation
  between
 
wood
  density
  and
  MC,
  which
  is
  influenced
  by
  mass
  loss
  during
  thermal
  treatment.
  It
  is
  expected
 
that
  there
  will
  be
  various
  strength-­‐stiffness
  properties
  of
  thermally
  treated
  wood
  when
  exposed
 
to
 varied
 climatic
 conditions.
 

The
  relationship
  of
  mechanical
  properties
  of
  wood
  and
  wood
  MC
  after
  thermal
  treatment
  is
 
therefore
  researched.
  Ten
  radially
  oriented
  beech
  wood
  boards
  (Fagus
  sylvatica
  L.)
  of
  32
  mm
 
thickness
 and
 2
 m
 length,
 having
 no
 visible
 defects,
 were
 split
 into
 two
 halves
 for
 the
 control
 (C)
 
and
 thermally
 treated
 board
 samples
 (TT).
 Industrial
 thermal
 treatment
 in
 an
 unsaturated
 steam
 
atmosphere
  (Patm
  =
  1.2
  bar)
  was
  performed
  at
  Evolen
  company
  (HR)
  on
  TT
  board
  samples
  with
  a
 
pre-­‐drying
  phase
  (T
  =
  105
  °C),
  a
  stepwise
  heating
  phase,
  heating
  at
  maximum
  temperature
  of
 
210
  °C,
  followed
  by
  cooling
  and
  conditioning
  (20
  °C
  /
  65
  %
  RH).
  Prismatic
  compression
  wood
 
specimens
  (L×R×T
  =
  20
  mm
  ×
  20
  mm
  ×
  20
  mm)
  were
  made
  in
  a
  series
  (n
  =
  8)
  from
  each
 
unmodified
  and
  thermally-­‐treated
  board
  halves.
  Adsorption
  behaviour
  was
  studied
  at
  room
 
temperature
  (20
  ±
  0.1
  °C)
  by
  putting
  one
  specimen
  of
  a
  series
  to
  equilibrate
  at
  a
  single
  relative
 
humidity
 (RH),
 having
 a
 range
 from
 0
 %
 to
 97
 %.
 Transverse
 (T)
 and
 longitudinal
 (L)
 displacement-­‐
controlled
 compression
 tests
 were
 conducted
 on
 equilibrated
 specimens
 using
 a
 Universal
 Testing
 
Machine
  (Zwick
  Z100),
  where
  Young’s
  moduli
  MOE,
  proportional
  limit
  stress
  σPL,
  and
  ultimate
 
strength
 σmax
 were
 determined.
 
The
  thermal
  treatment
  generally
  improved
  the
  hygroscopicity
  of
  beech
  wood
  (∆EMC
  =
  -­‐50
  %),
 
more
 pronounced
 at
 upper
 hygroscopic
 range,
 and
 reduced
 wood
 density,
 where
 the
 mean
 oven-­‐


  69
 
   76   77   78   79   80   81   82   83   84   85   86