Page 82 - Kutnar, Andreja, et al., eds., 2015. Proceedings of the 1st COST Action FP1307 International Conference - Life Cycle Assessment, EPDs, and modified wood. University of Primorska Press, Koper.
P. 82
  density
  decreased
  from
  685
  kg/m3
  to
  620
  kg/m3
  (∆ρ
  =
  -­‐9.3
  %).
  The
  stiffness
  of
  beech
  wood
 
along
 the
 grain
 slightly
 increased
 after
 the
 thermal
 treatment
 (∆MOE
 =
 +
 7.8
 %),
 more
 significantly
 

for
  the
  most
  dry
  wood
  samples,
  where
  MC
  –
  stiffness
  relationship
  remains
  unchanged
  (Fig.
  1).
 

Oppositely,
  a
  slight
  reduction
  of
  stiffness
  of
  beech
  wood
  after
  thermal
  treatment
  was
  confirmed
 

in
 the
 transverse
 wood
 direction,
 most
 significant
 at
 oven
 dry
 state
 (∆MOE
 =
 -­‐
 15.7
 %).
 

Figure
 1:
 
 
The
  relationship
  between
  wood
  MC
  and
  MOE
  of
  innate-­‐
  (○)
  and
  thermal-­‐treated
  beech
 

wood
 (●)
 along-­‐
 (left)
 and
 transverse
 to
 the
 grain
 (right).
 

The
  thermally-­‐treated
  beech
  wood
  retained
  the
  ultimate
  strength
  along
  the
  grain,
  compared
  to
 
untreated
 wood.
 Whereas
 ultimate
 strength
 was
 significantly
 reduced
 in
 the
 transverse
 direction
 
(-­‐41
  %)
  at
  the
  whole
  examined
  MC
  interval.
  The
  relative
  strength
  (σ/σ0),
  defined
  as
  a
  ratio
  of
 
ultimate
 strength
 at
 a
 single
 MC
 (σ)
 and
 at
 oven
 dry
 state
 (σ0),
 confirmed
 the
 equality
 of
 strength
 
changes
  with
  wood
  moistening
  or
  drying
  in
  both
  groups
  (C,
  TT)
  in
  both
  directions
  (L,
  T).


 

Figure
 2:
  The
  relationship
  between
  wood
  MC
  and
  σmax
  of
  innate-­‐
  (○)
  and
  thermal-­‐treated
  beech
 

wood
 (●)
 along-­‐
 (left)
 and
 transverse
 to
 the
 grain
 (right).
 

References
 

Boonstra,
  M.
  and
  B.F.
  Tjeerdsma
  2006.
  Chemical
  analysis
  of
  heat-­‐treated
  softwoods.
  Holz
  als
  Roh-­‐
  und
 
Werkstoff
 64:
 204-­‐211.
 
 

Esteves,
  B.M.
  and
  H.
  Pereira
  2009.
  Wood
  modification
  by
  heat
  treatment:
  A
  review.
  BioResources
  4:
  370-­‐
404.
 
 

Ozyhar,
 T.,
 S.
 Hering
 and
 P.
 Niemz
 2013.
 Moisture-­‐dependent
 orthotropic
 tension-­‐compression
 asymmetry
 
of
 wood
 Holzforschung
 67:
 395-­‐404.
 
 

Poncsak,
  S.,
  D.
  Kocaefe,
  M.
  Bouazara
  and
  A.
  Pichette
  2006.
  Effect
  of
  high
  temperature
  treatment
  on
  the
 
mechanical
 properties
 of
 birch
 (Betula
 papyrifera).
 Wood
 Science
 and
 Technology
 40:
 647-­‐663.
 
 

Acknowledgments
 

The
 authors
 would
 like
 to
 thank
 to
 the
 Slovenian
 Research
 Agency
 and
 Ministry
 of
 agriculture,
 forestry
 and
 

food,
  for
  support
  of
  programme
  P4-­‐0015,
  and
  V4-­‐1419.
  Thanks
  are
  also
  to
  Evolen
  company
  (HR)
  for
 

providing
 timber
 material
 for
 this
 study.
 
 


  70
 
   77   78   79   80   81   82   83   84   85   86   87