Page 85 - Kutnar, Andreja, et al., eds., 2015. Proceedings of the 1st COST Action FP1307 International Conference - Life Cycle Assessment, EPDs, and modified wood. University of Primorska Press, Koper.
P. 85
ility
 and
 toxicity
 of
 heavy
 metal(loid)s
 arising
 from
 contaminated
 
wood
 ash
 application
 to
 a
 pasture
 grassland
 soil
 

L.
 Beesley1,
 K.
 Mitchell1,
 L.
 Mollon2,
 G.J.
 Norton2
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
 The
 James
 Hutton
 Institute,
 Craigiebuckler,
 Aberdeen,
 AB15
 8QH,
 UK
 
 
 
 
 
 
2
 University
 of
 Aberdeen,
 Cruickshank
 Building,
 St.
 Machar
 Drive,
 Aberdeen,
 AB24
 3UU,
 UK.
 

 

Keywords:
 Heavy
 metal
 toxicity,
 bioavailability,
 wood
 ash,
 arsenic,
 chromium
 


 
Wood
  modified
  with
  weatherproof
  protectants,
  paints,
  and
  preservatives
  historically
  contained
 
heavy
 metals
 and
 organic
 compounds.
 After
 combustion
 of
 these
 woods
 for
 heat
 and
 power,
 and
 
loss
  of
  more
  volatile
  organic
  compounds
  (VOC),
  the
  final
  ash
  is
  concentrated
  in
  both
  nutrients
 
from
  the
  biomass
  and
  heavy
  metal(loid)s
  arising
  from
  the
  additive
  treatments
  (Balasoiu
  et
  al.
 
2001). One
  way
  to
  dispose
  of
  wood
  ash
  without
  dumping/landfilling
  is
  by
  application
  to
  soil,
 
which
  has
  a
  number
  of
  benefits
  and
  potential
  concerns
  associated.
  For
  example,
  it
  has
  been
 
demonstrated
  that
  the
  addition
  of
  wood
  ash
  to
  soils
  increases
  pH
  (Klemedtsson
  et
  al.
  2010)
  and
 
improves
 crop
 biomass
 and
 yields
 (Bougnom
 et
 al.
 2012).
 However,
 studies
 that
 have
 used
 wood
 
ash
 generated
 from
 reclaimed
 waste
 (contaminated)
 feedstocks
 report
 that
 heavy
 metals
 derived
 
from
  the
  ash
  are
  bioavailable
  and
  potentially
  phytotoxic,
  negatively
  impacting
  crop
  yields
 
(Lucchini
 et
 al.
 2013)
 and
 introducing
 potential
 environmental
 risk.
 


 We
  conducted
  a
  pot
  experiment
  to
  investigate
  the
  fate
  of
  metal(loid)s
  derived
  from
 
contaminated
  ash
  (≤
  10000
  mg
  kg-­‐1
  As,
  Cr,
  Cu
  and
  Zn;
  Table
  1)
  added
  to
  an
  upland
  pasture
  soil
 

(Aberdeenshire,
 UK),
 replicating
 a
 common
 disposal
 route
 for
 on-­‐farm
 generated
 ash.
 Metal(loid)
 
concentrations
  were
  measured
  after
  9
  weeks
  in
  pore
  water
  and
  ryegrass
  grown
  on
  the
 

soil/manure-­‐ash
  mixtures
  (0.1-­‐3.0%
  vol.
  ash).
  Toxicity
  evaluation
  was
  performed
  on
  pore
  waters
 
by
 means
 of
 a
 bacterial
 luminescence
 assay.
 
 

Table
 1:
 
 
  Metal(loid)
 concentrations
 (pseudo-­‐total)
 of
 soil,
 manure,
 and
 ash;
 values
 are
 the
 mean
 of
 

replicates
 (n=5)
 ±
 s.e.m.
 

mg
 kg-­‐1
  As
  Cr
  Cu
  Zn
 
Soil
  4.5
 ±
 0.2
  23.9
 ±
 2.1
  8.8
 ±
 0.6
  23.2
 ±
 1.4
 
5.4
 ±
 0.4
  19.7
 ±
 2.1
  22.6
 ±
 2.1
  169.0
 ±
 11.5
 
Manure
  9259.4
 ±
 649.3
  9914.1
 ±
 714.9
  8793.4
 ±
 632.0
  4666.7
 ±
 373.5
 
Ash
 

Both
  pore
  water
  and
  ryegrass
  tissue
  concentrations
  of
  As,
  Cu,
  and
  Cr
  were
  elevated
  by
  ash
 
applications
  compared
  to
  soils
  receiving
  no
  ash.
  Applying
  ash
  to
  manure
  amended
  soil
  buffered
 
some
  phyto-­‐toxicity
  effects
  associated
  with
  ash
  application
  to
  non-­‐manure
  treated
  soil,
  by
 
regulating
  pH
  regardless
  of
  ash
  application
  volume.
  This
  was
  evident
  from
  improved
  ryegrass
 
biomass
  and
  bacterial
  luminosity
  concomitant
  to
  soil
  without
  ash
  addition
  (Fig.
  1).
  Pore
  water
 
concentrations
  of
  As
  and
  Cu
  significantly
  correlated
  with
  ryegrass
  uptake,
  indicating
  that
  these
 
elements
  were
  the
  most
  bioavailable
  of
  those
  investigated.
  Cr
  uptake
  was
  influenced
  by
  the
 
volume
  of
  ash
  addition
  but
  ash
  had
  no
  impact
  on
  either
  pore
  water
  or
  ryegrass
  accumulation
  of
 
Zn.
 


  73
 
   80   81   82   83   84   85   86   87   88   89   90